MATH 140A Review: Set builder notation in \(\mathbb{R} \)

Simplify the notation:

1. \(\mathbb{N} \cap [0, 1.2) \)

Solution: We have that \(x \in \mathbb{N} \cap [0, 1.2) \) if and only if \(x \in \mathbb{N} \) and \(x \in [0, 1.2) \). Hence, \(x \in \mathbb{N} \cap [0, 1.2) = 1 \).

2. \(\{ x \in \mathbb{R} : x > 2 \} \cap (-\infty, 8] \)

Solution: We have that \(y \in \{ x \in \mathbb{R} : x > 2 \} \cap (-\infty, 8] \) if and only if \(y \in \{ x \in \mathbb{R} : x > 2 \} = (2, \infty) \) and \(y \in (-\infty, 8] \). Thus, \(\{ x \in \mathbb{R} : x > 2 \} \cap (-\infty, 8] = (2, 8] \).

3. \(\mathbb{R}^c \)

Solution: We will show that the set is empty by way of contradiction. Assume that there exists a real number \(x \in \mathbb{R}^c \). Then, \(x \not\in \mathbb{R} \). This is a contradiction since \(\mathbb{R} \) is the set of all real numbers, but \(x \) is a real number not in \(\mathbb{R} \). Thus, the set \(\mathbb{R}^c \) is empty. That is, \(\mathbb{R}^c = \emptyset \).

4. \(\mathbb{Z} \cap \mathbb{Q}^c \)

Solution: We will show that the set is empty by way of contradiction. Assume that there exists \(x \in \mathbb{Z} \cap \mathbb{Q}^c \). Then, \(x \in \mathbb{Z} \) and \(x \in \mathbb{Q}^c \). Since \(x \in \mathbb{Q}^c \), then \(x \) is irrational. This is a contradiction since \(x \in \mathbb{Z} \), that is, \(x \) is an integer number (which is also a rational number). Thus, the set \(\mathbb{Z} \cap \mathbb{Q}^c \) is empty. That is, \(\mathbb{Z} \cap \mathbb{Q}^c = \emptyset \).