Facts to Know:
For simplicity, we assume all functions in this script are continuous and differentiable everywhere.

1. Critical numbers: \(x = c \) is a critical number of the function \(f(x) \) if \(f'(c) = 0 \).

2. First derivative test: Suppose \(c \) is critical number of \(f(x) \)
 - If \(f' \) changes from positive(+) to negative(−), then \(f \) has a local maximum at \(c \), \(x=0 \).
 - If \(f' \) changes from − to +, then \(f \) has a local minimum at \(c \), \(x=0 \).
 - If \(f' \) is + to the left and right of \(c \), or − to the left and right of \(c \), then \(f \) has no local extreme value at \(c \).

3. Second derivative test: If \(f'(c) = 0 \) and
 - \(f''(c) > 0 \), then \(f \) has a local minimum at \(c \), \(x=0 \).
 - \(f''(c) < 0 \), then \(f \) has a local maximum at \(c \), \(x=0 \).
 - \(f''(c) = 0 \), then no conclusion

Example:

1. Find all local extreme values of \(f(x) = x^3 - 3x. \)
 - Find critical numbers:
 \[
 f'(x) = 3x^2 - 3 = 3(x^2 - 1) = 0 \Rightarrow x^2 - 1 = 0 \Rightarrow x = \pm 1
 \]
 2 critic. numbers: 1 and −1
 - Method 1: First derivative test:
 \[
 \begin{array}{|c|c|c|}
 \hline
 \text{Interval} & f'(x) & f(x) \\
 \hline
 x < -1 & + & \uparrow \\
 -1 < x < 1 & - & \downarrow \\
 x > 1 & + & \uparrow \\
 \hline
 \end{array}
 \]
 \(f(x) \) has:
 local max. \(f(-1)=2 \) at \(x=-1 \)
 local min \(f(0)=-2 \) at \(x=1 \)
 - Method 2: Second derivative test:
 \[
 f''(x) = 6x
 \]
 \[
 \begin{array}{|c|c|c|}
 \hline
 x & f''(x) & f(x) \\
 \hline
 1 & 6 (+) & \text{local min} \\
 -1 & -6 (-) & \text{local max} \\
 \hline
 \end{array}
 \]
 \(f \) has:
 local min \(f(1)=-2 \) at \(x=1 \) and
 local max value \(f(-1)=2 \) at \(x=-1 \)