1. Find the first partial derivatives of the function \(f(x, y) = \frac{x}{y} \), then find a point \(P(a, b) \) such that \(\frac{\partial f}{\partial x}(a, b) = \frac{\partial f}{\partial y}(a, b) = \frac{1}{2} \).

Solution: Treat \(y \) as constant, get \(\frac{\partial f}{\partial x} = \frac{1}{y} \).

Treat \(x \) as constant, get \(\frac{\partial f}{\partial y} = -\frac{x}{y^2} \).

\[\frac{1}{2} = \frac{\partial f}{\partial x} = \frac{1}{y} \Rightarrow y = 2. \]

\[\left\{ y = 2 \text{ and } \frac{1}{2} = \frac{\partial f}{\partial y} = -\frac{x}{y^2} \right\} \Rightarrow x = -2. \]

So the point is \((-2, 2)\).

2. Find the first partial derivatives of the function \(w = \ln(x + 2y + 3z) \).

Solution: Treat \(y \) and \(z \) as constant, get \(\frac{\partial w}{\partial x} = \frac{1}{x + 2y + 3z} \).

Treat \(x \) and \(z \) as constant, get \(\frac{\partial w}{\partial y} = \frac{2}{x + 2y + 3z} \).

Treat \(x \) and \(y \) as constant, get \(\frac{\partial w}{\partial z} = \frac{3}{x + 2y + 3z} \).

3. Find the gradient of the function \(f(x, y, z) = \frac{xz}{x^2 + y^2} \), and evaluate the gradient at the point \(Q = (1, 1, 0) \).

Solution:

\[\frac{\partial f}{\partial x} = \frac{z(x^2 + y^2) - xz(2x)}{(x^2 + y^2)^2} = \frac{z(y^2 - x^2)}{(x^2 + y^2)^2} \]

\[\frac{\partial f}{\partial y} = \frac{-xz(2y)}{(x^2 + y^2)^2} = \frac{-2xyz}{(x^2 + y^2)^2} \]

\[\frac{\partial f}{\partial z} = \frac{x}{x^2 + y^2} \]

So

\[\nabla f = \left\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z} \right\rangle = \left\langle \frac{z(y^2 - x^2)}{(x^2 + y^2)^2}, \frac{-2xyz}{(x^2 + y^2)^2}, \frac{x}{x^2 + y^2} \right\rangle \]

Evaluating at \(Q = (1, 1, 0) \), we get

\[\nabla f(1, 1, 0) = \langle 0, 0, \frac{1}{2} \rangle \]