Facts to Know:

A is an $n \times n$ matrix:

- λ is an eigenvalue of A if there is a vector \vec{v} such that $A\vec{v} = \lambda \vec{v}$.
- Such \vec{v} is called an eigenvector of A corresponding to eigenvalue λ.
- λ is an eigenvalue if and only if $\det(A - \lambda I) = 0$.
- The set of all solutions to $A\vec{v} = \lambda \vec{v}$ is called the eigenspace of A corresponding to λ.

Examples:

1. Let $A = \begin{bmatrix} 5 & 2 \\ 1 & 4 \end{bmatrix}$, find all eigenvalues, and for each eigenvalue, find a basis for the corresponding eigenspace.