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Abstract. Quasi-stable gradients of signaling protein molecules (known as
morphogens or ligands) bound to cell receptors are known to be responsible
for dilerential cell signaling and gene expressions. From these follow diler-
ent stable cell fates and visually patterned tissues in biological development.
Recent studies have shown that the relevant basic biological processes yield
gradients that are sensitive to small changes in system characteristics (such
as expression level of morphogens or receptors) or environmental conditions
(such as temperature changes). Additional biological activities must play an
important role in the high level of robustness observed in embryonic pattern-
ing for example. It is natural to attribute observed robustness to various type
of feedback control mechanisms. However, our own simulation studies have
shown that feedback control is neither necessary nor su'cient for robustness
of the morphogen decapentaplegic (Dpp) gradient in wing imaginal disc of
Drosophilas. Furthermore, robustness can be achieved by substantial binding
of the signaling morphogen Dpp with nonsignaling cell surface bound molecules
(such as heparan sulfate proteoglygans) and degrading the resulting complexes
at a su'ciently rapid rate. The present work provides a theoretical basis for
the results of our numerical simulation studies.
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1. Introduction.  During the initial phase of embryonic development, identical
cells simply divide to reproduce more of the same. At some stage, signaling protein
molecules known asmorphogens (aka ligands) are synthesized at a localized site.
These morphogens disperse from their production site; some bind to cell receptors
along the way, generally resulting in dilerent receptor occupancies at dilerent cell
locations. The spatial concentration gradient of morphogen-receptor complexes
(aka bound morphogen} induces spatially graded dilerences in cell signaling. The
di'erential cell signaling in turn gives rise to dilerent gene expressions from which
follow di'erent stable cell fates and visually patterned arrangements of tissues and
organs during development.

In principle, the process of forming morphogen gradients leading ultimately to
tissue patterning consists of syntheses of transportable morphogens and membrane
bound cell receptors, their binding and dissociation, endocytosis and exocytosis of
morphogen-receptors and their intracellular degradation. This collection of biolog-
ical processes that explicitly include endocytosis and exocytosis has been modeled
mathematically as System C in [L8] from which we have deduced by analysis and
computation how the shape of the signaling gradient depends on the system param-
eters such as synthesis rates of morphogens and receptors, binding and degradation
rate constants, etc. We also see from the mathematical model that small changes
of these system parameters may cause substantial changes in gradient shagé][

In contrast, embryonic patterning is usually highly robust, resisting not only sub-
stantial changes in the expression level of individual genes, but also Ructuating en-
vironmental conditions (e.g., unseasonal heat waves). This suggests that additional
biological processes must also be at work to ensure such robustness. ldentifying
the cause of robustness and ways of producing robust morphogen gradients have
become a major research elort in recent yearsd], 7, 8, 13, 14, 15, 23, 24, 31, 32].

A reasonable supposition would be that robustness is the result of various types
of feedback control mechanisms. For example, the amount of signal received by
a cell may inBuence the amount of receptors it makes for the particular type of
signaling morphogen. Another feedback mechanism may be the up-regulation of
receptor-mediated degradation rate by cell signaling. TheDrosophila wing imag-
inal disc is patterned by the gradient of the decapentaplegic (Dpp) morphogen,
a member of the bone morphogenetic protein branch of the transforming growth
factor-! superfamily. Dpp signaling represses synthesis of its receptors, but en-
hances Dpp degradation §, 22]. Analytical and numerical simulations of a model
system that includes feedback 15, 20] showed that repression of receptor synthesis
rate alone (without enhancing morphogen degradation) does not sustain the ex-
pected robustness. This is supported by the results in7] showing that additional
biological activities were needed to attain robustness for the morphogen gradient
and prompted considerations for alternative paths to morphogen gradient robust-
ness in R0. A major bnding by numerical simulations of various model problems
in [20] is that feedback control is neither necessary nor su“cient for robustness for
the Dpp gradient in wing imaginal disc of Drosophilas. In addition, the numerical
results suggest that robustness of the Dpp gradient can be achieved by substan-
tial binding of the signaling morphogen Dpp with nonsignaling cell surface bound
molecules, such as cell surface heparan sulfate proteoglycans, calledn-receptor
for brevity, and degrading them at su“ciently rapid rate. (The former is to be the
consequence of high occupation of receptors and low occupation of non-receptors
while the latter means a high degradative Bux of non-receptor relative to that of the
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receptors.) No feedback is required throughout this slightly more complex process of
gradient formation. That non-receptors can be solely responsible for robustness may
explain, in part, existing and growing evidence that nonsignaling molecules are usu-
ally present and participating actively in morphogen gradient formation (through
binding with the signaling morphogen)[25].

The robustness of a morphogen gradient is relevant only if the morphogen gradi-
ent is biologically capable of inducing dilerential cell signaling (multi-fate signaling).

A multi-fate signaling should broadly distribute pattering information over the en-
tire Peld of cells so that multiple types of cells can be developed. A quantitative
measure of biologically realistic multi-fate signaling morphogen-receptor gradients
was Prst introduced in [L8] in terms of the magnitude, steepness and convexity of the
gradient. The measure is further quantibed numerically in R0, 21] to give numerical
yardsticks to geometrical features of Otoo steep/too narrowO Otoo wideO and Otoo
convexO. In 20}, numerical simulations were carried out for 2° (or more than more
than 10°) random sets of parameter values for each of the model systems. After
discarding the parameter sets that result in biologically unrealistic gradients that
would result in most cells in the wing disc developing into the same cell type, the
robustness of the remaining biologically multi-fate signaling) cases were examined
with respect to a range of discrete values of one of the bve important normalized
parameters for a very large number of random sets of the other parameters. These
plots enabled us to see the existence of robust multi-fate gradients with the addi-
tion of non-receptors alone (without feedback) to System C and the nonexistence
of robust multi-fate gradients with down regulating feedback alone (without non-
receptors).

The Pndings in R0] positioned us to develop a theoretical foundation for the
conclusions suggested by the numerical simulations. Specibcally, we develop an
existence proof of robust multi-fate gradients in a non-empty region of the parameter
space of the biological system, the Dpp-receptor gradient in the imaginal disc of
Drosophilas, with respect to a substantial (two-fold) change of ligand synthesis
rate. We will use the same criterion for robustness introduced in 0, 21] but will
work with a more general set of criteria for a multi-fate gradient. Together, they
will enable us to analytically locate a region of multi-fate gradients in the parameter
space which are robust with respect to the ligand synthesis rate. As such, we will
have a considerably more complete and explicit understanding of the dependence of
multi-fate and robustness on the system parameters. It is expected that the same
analytical method will also enable us to extract useful information on robustness
with respect to other system parameters.

2. Formulation.

2.1. The Initial-Boundary Value Problem. The Dpp-receptor gradient system
in the wing imaginal disc of Drosophilas analyzed in 18] involves concentrations of
free ligands (Dpp) [L], cell membrane bound receptors (Tkv) in extracellular space
[Rlout and cell interior [R]in, and the extra- and intracellular morphogen-receptor
complexes [LR}y: and [LR]i,. The morphogen-receptor complexes inside cells [LR]
provide the signal to activate the target genespotomotorblind ( omb) and spalt (sal);
it is the gradient of [LR];, that determines the fate of cells. Synthesized locally over
a few cells between the posterior and anterior compartment at a raté/ uniformly
in the directions orthogonal to the anterior-posterior axis, the ligands diluse away
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from the source and bind to signaling cell receptors along the way with the ligand-
receptor complexes transcytosing and degrading in the cell interior. Receptors are
synthesized at a constant rate" g to replenish losses through degradation of both
[LR]in and [R]in. The evolution and interaction of ligands and receptors will be as
characterized by the space-time model System C oflp]. Given the nature of the
morphogen source, morphogen activities essentially vary only in the direction of
anterior-posterior axis X, from the ligand source to the edge of the wing disc.

For the present robustness study, we add to System C concentrations of non-
receptors [N}y and [N]in, morphogen-non-receptor complexes [LN]: and [LN]in;
they transcytose and degrade in a way similar to the morphogen-receptor complexes.
For this extension of System C, we have the following spatially one-dimensional
system of dilerential equations prst introduced in [20]:

2
= v+ B Kl RIan + ko LRI )
_jon[l—] [N]out + jo! [LN]out

AR = Kl Rlax kot [RIowe ki [Rlau + kou[LRIn (2
AR = K [LRJow — kou [LRTin — KaeglLRIi 3
Ao = KenlIRlow + o [LRlout — Ky [Rlow + Ky[Rli @)
AR kIRl + K [Rlouw — K, [Rln 5)
Ao = jonlNIow — Jor NJowe LN + Jou NI (6)
AR = NI — ou [LNIin — aeg LN]i @
Aot = onlLlNJoue + Jor [LNJouw — Jy[NJow + [N ®)
A 5Nl + Nl — o [NT ©)

for —dp < X < Xpmax With V (X) given in terms of the Heaviside unit step function
H(2):
0 (z<0)
1 (z>0)
where vy is a constant so that morphogens are synthesized uniformly in the region
—dp < X < 0 only. The synthesis rates of receptors and non-receptors are taken to
be uniform in time but " g and " y may be piecewise constant inX. No feedback is
considered in the present model.

We consider here the development of only the posterior compartment of the wing
disc including half of the morphogen production region. At the border between the

V (X) = voH(—X), H(z) = { (10)

two compartments, X = —dg, we have the no RBux conditions
#[L]
— =0 at X=-d 11
o 0 (11)

as a consequence of the condition of symmetry relative to the border. At the other
end, there are very few free ligand molecules not bound to a receptor or non-receptor;
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hence we may treat the edge as a sink so that:
L]=0 at X = Xmax (12)
With V (X) discontinuous at X = 0, we stipulate also the continuity of [L] and
#[L]/#X at X = 0.

Before the onset of morphogen production atT = 0, we have no morphogen
concentration of any kind so that

[L]=[LR] out =[LR]in =[LN]out =[LN]Jin =0, (—do <X < Xpmax,T <0). (13)

The receptors and non-receptors are expected to be in steady-state prior to the
onset of ligand production so that

#[R]in _ #[R]out _ #[N]in _ #[N]out _
#T — #T  #T #T =0. (14)

These conditions lead to the steady state values that constitute the remaining initial
conditions:

) _
Rlow = —Z "r =Ry, [NJow = 34"y =N,
k!] kp J']JP
T=0: . . (15)
[Rlin = i = R;, [N = ﬁ =N,

for the concentrations of receptor and non-receptor.

The system above, designated as System CN, is formally a straightforward exten-
sion of System C and reduces to the latter in the absence of non-receptors. However,
they diler substantively from System C in that we have included as in [19] the re-
gion of morphogen synthesis as a part of the solution domain. In acknowledging
the presence of a region of ligand synthesis and the need to consider the molecu-
lar dynamics in that region in conjunction with the other ligand activities, we have
made the problem more complicated and must deal with its consequences, including
allowing the morphogen-production cells to have receptors and non-receptors that
bind with some of the morphogens they produced]0, 11].

2.2. Steady-State Behavior.  After the onset of morphogen production, concen-
tration gradients of the dilerent concentrations form rapidly reaching some quasi-
steady state conbguration in a matter or hours or less. It is the robustness of the
steady state gradients that is of current interest in development. Upon setting
all time partial derivatives to zero, all but the brst of the set of governing partial
dilerential equations become algebraic equations that can be solved to obtain

. &RR,L _ SuNG[L]

[LR]OUt - m, [LN]out - m (16)
_ RR[L] _ RN

[LR]in = 0+ Sk’ [LN]in 0+ S 17)
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where the intrinsic parameters are

kd b - kin kdeg jd b - jinjdeg
egons Kout + kdeg ’ egons jo_ut_+ jdeg’
krdegobs = Hon ) jrdegobs = %,
kg + kﬁ Jot g
Kk _ ko! + degobs - _ Jo! + Jdegobs
m = ki’ Im = —
on ) Jon
$r = Krdegobs /Kdegobs » N = Jrdegobs /_JdegobSy
O/R — krdegobs kq ' % - Jrqegob? Jq )
I(deg kp Jdeg Jp
Upon setting
X+ do do [L] [LRIin
= , d= , = , = ) 18
X Xmax + d0 xmax + d0 2 $ka O/R Ri ( )
&2R - kdegobs(xgakx + dO)ZRo' &’2\‘ - jdegobs(xlr:n)a}x + dO)ZNo, (19)
(Xmax + d0)2 $R km
X)= ———V(X), "= —, 20
&=8+& p=&/& (21)

we obtain from 1, with #[L]/#T = 0, the following dimensionless ODE for the
normalized steady state free ligand concentratiora(x):

" e2 p 1_p _ - /= d( )
a &(1+a+1+‘a)a+VH(d X)=0, () = ix (22)
with
_ (Xmax + do)? o= vo/R, & _ | & (23)
D$R km kdegobs$R o $R’

where! = (vo/R,)/Kdegobs IS the ratio of the (normalized) ligand production rate
to the (normalized) observed degradation rate of the ligand-receptor complexes brst
introduced in [18] to help characterize the steady state level of ligand concentration.

For the second order ODE with a discontinuous forcing term, we have the bound-
ary conditions

a'(0)=a(l)=0 (24)
and the continuity conditions of a and &’ at x = d. The normalized concentration
of the signaling morphogen-receptor complexes is given by

a(x)
ax)+1°
Hereafter, we will use uppercase letters X, [L],[LR], etc.) to denote the origi-
nal variables, and lowercasesx, a(x), b(x)) to denote the normalized/dimensionless
variables; they are related by 18E21. Note that this convention does not apply to
the system parameters.

Biologically, free and bound morphogens form gradients outside the production
region rapidly. At steady state, the gradient of the signaling ligand-receptor concen-
tration should be capable of inducing dilerent cell fates at dilerent cell locations.
Moreover, the signaling gradient and the resulting tissue pattern should be highly ro-
bust notwithstanding substantial system parameter changes (e.g. a two-fold change
in the expression of individual genes) resulting from Ructuation of environmental
conditions (e.g. unseasonably high or low temperature). In this paper, we will be

b(x) = (25)
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concerned with the role of non-receptors in the robustness of signaling gradients.
In the next section, what constitutes an admissible signaling gradient for multi-
fate development (or multi-fate gradient for brevity) will be debned quantitatively
and an analytical measure of robustness will be introduced for signaling gradients.
Together, they will provide us with the quantitative criteria for analyzing how non-
receptor alects the robustness of multi-fate gradients.

In the boundary value problem (BVP) for the steady state free ligands debned
by 22E04, there are bve parameterdl,’, &, p, and v. The parameterd is the relative
width of the production region of the morphogen. In this paper, we will always take
d to be a prescribed quantity (with d = 0.06 corresponding to the width of 12um
of the production region compare with 20@um, the width of the Drosophila wing
imaginal disc). The parameterv is the only one involving the rate of morphogen
infusion vg and may be taken as normalized ligand synthesis rate. The parameter
" = $r k,/$n Jm, IS S€EN tO be the ratio of the saturation level of receptors to that
of non-receptors found to be important factors for robustness inZ0]. Similarly, the

ratio
p &Ee _ I(degobsRo/km =0 (#R>

(1 - p) &12\] jdEQObSN()/jm #N

is seen to be of the order of the ratio of degradative Ruxes of the receptor, g =
Kdegobs[LR]out » to that of non-receptor, #n = Jdegobs[LN]out , Previously introduced
in [20] when the steady state ligand concentration is relatively low. (We may also
consider the ratio to characterize the relative magnitude of the (normalized) syn-
thesis rate of ligand receptor and that of nonreceptor sincg/(1—p) = O("r/"n).)
In the degradative Bux interpretation, & = &3 + & is seen to be of the order of
the sum of these RBuxes. The numerical results in20] suggested that for System
CN, only a certain combination of these Rux and saturation factors would induce
robust signaling gradients capable of dilerential cell signaling. We will provide an
analytical validation for the observations in [20] and quantify more precisely the
conditions for their validity. For these and other results on robustness of signaling
gradients, we will need some specibc properties of the solution of the steady state
BVP 22E04. These will be developed in next few subsections.

2.3. Monotonicity of the Unique Steady State Solution. For a given set of
the non-negative values of the parametersl,', &, p, and v, the following existence
and uniqueness theorem for the BVP22-24 can be proved by the same method as
that used in [19] (see also TheoremA.1 of the Appendix of this paper):

Theorem 2.1. A unique non-negative solutiona(x) exists for the BVP 22-24 with
0 < a(x) < a,(x) where the upper solutiona, (x) for the problem is given by
_1 2 2 _
a,(x) = SV(X© + d° — 2d) 0 <x<d) _
—vd(x — 1) (d<x<1)
To study the properties of the steady state solution, we introduce the abbrevia-
tion

(26)

p 1-p
l+a 1+'a’

F(a) =
It is easy to see that

F(a) >0 d—F(a)<0 iF(a)>0 (27)
" da " da2 '
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d d?
G@F@ >0 (@F(@) <o, (28)
for all a > 0. The following monotonicity properties of a(x) are less straightforward:

Proposition 1. Let a(x; &,V) be the unique steady state solution a22E24 (which
of course depends also on the parametepsand ' as well). Then for all positive &
and v, we have

#a #a , #a
—_— = —<< : = —< X< .
py 0, ) 0, and a'(x; &,V) x 0 (O<x<1) (29)

Proof. Upon dilerentiating 22-24 with respect to v and setting ( (X; &,V) = #a/#v,
we see that( is determined by the BVP

(" =& q(x)(+H(d-x)=0, ('(0)=((1)=0 (30)
where H(z) is the Heaviside unit step function and

d p 1-p
= — = +
o) = (F(@)a) a7t @y
Apply Theorem A.1 to the BVP 30, we have( (x) = #a/#v >0 for all x € (0,1).
The inequality #a/#& <0 is proved similarly.
Sincea(l) =0 and a(x) > 0 for 0 < x < 1, we havea’(1) < 0 and, with

a’(x) = &aF(a) >0, (xe€(d,1)),

a'(x) < 0 for d < x < 1. Furthermore, it follows from the fact that a’(x) is

continuous at X = d we have alsoa’(d) < 0. We will prove a’(x) < 0 for x € (0, d)

as well. Note that a’(x) is continuous in [0, d] with a’(0) = 0 and a’(d) < 0. Suppose
the contrary with a’(x;) > 0 for some 0< x; < d, then there would exist a value
X2 € [X1,d], such that a’(xz) = 0. In that case, there would exist x3 € (0, Xz), such

that a”’(x3) = 0. Hence, a(xs) satisbes

& F(a(x3)) a(x3) = V. (32)

We consider separately the two casea’(x) > 0 and a’(x) < 0 for all x € (0, X3):
Case 1. a/(x) > 0 for all x € (0,%3). In this case, for any x € (0, x3), we have
a(x) < a(xz) and

> 0. (31)

a=a(x)

a’(x) = & F(a(x)) a(x) —v<0
by 31 With a’(0) = 0 and a’(x) decreasing with x in (0, x3), it follows that
a’(x) < 0 for x € (0,x3). This contradict the Case 1 scenario ofa’(x) > 0 for all
x € (0, X3).
Case 2. a'(x) < 0 for all x € (0,x3). Then for any x € (0, x3), we have
a(x) > a(xz), and therefore

a’(x)= & F(a(x))a(x) —v=>0
by 31 It follows that a’(x) > 0 for x € (0,x3) which contradict to the Case 2
scenario ofa’(x) < 0 for all x € (0, X3) .

Since neither scenario is possible, we must haw&(x) < 0 for x € (0,d) and the
third part of 29is proved. O

3. Explicit Steady State Solutions.

3.1. Exact Steady State Solution. The second order ODE22 is autonomous
and can be integrated to givex as a function ofa:
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Proposition 2. The exact solution of the BVP 22E24 may be written as

/282 (E(a) — Ea0)) — 2v(a —a0). 0<x<d)
a(x) = . (33)
2R E@+(a(D)2 d<x<1)
ao du
/a V2ZEW E@) v_a) X9
X = , (34)

"ad du
a / V2&E(u)+(a(1)?’

(d<x<1)

where

E(u) = /OuF(a)ada: p(Uu—In(L+ u))+ 1,_2p('u —In(l+'u)),  (35)

with

E(0)=0 and E(U)|, -0 = p <u—|n(1+ u) + 12_pp uz). (36)

The three unknown constants of integrationap, = a(0), a; = a(d) and s; = a’(1)
are determined bya(1) = 0 and the continuity of a and a’ at x = d with the last of
these three conditions requiring

ag—ap = _?1\/ {287 E(ap) + (a'(1))%} . (37)

The derivation of this exact solution is similar to that for the case of no non-receptors
in [19] and will not be given here.

3.2. Low Ligand Synthesis Rate ( LLSR). Though equations 33-35 give the
exact solution of the BVP, insight to steady state behavior is not readily accessible
from these expressions. We obtain in this subsection an explicit solution which is a
leading term perturbation solution (and an adequate approximation) of the exact
solution for low normalized morphogen synthesis rates (corresponding to low occu-
pation for both receptors and non-receptors in £0]). As we shall see, it also provides
a useful tool to decipher the implications of the exact solution for intermediate range
of morphogen concentration.

For a su"ciently small normalized synthesis rate, we expect 0< a(x) < 1 and
0 <'a(x) <« 1 (corresponding to [L] < $rk,, and [L] < $nim). In that case, a
leading term approximate solution of the steady state problem is determined by

a] —&ap+vH(—-x)=0, a}(0)=ar(1)=0. (38)

Similar to the method in [19], we have for this low ligand synthesis rate [LRS)
caseay(x) = v K(x; & with

cosh@) — coshi &) cosh(&(1 — d))

&2 cosh@) '

K(x; & = . (39)
sinh(&d) sinh(&(1 — x))

&2 cosh@) '
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The monotonicity properties of a(x) of Proposition 1 apply to K(x;&). Some of
these can be seen directly from the explicit solution above. For example, we have
K’(x; & < 0 from

_sinh(& X) cosh(@&(1 — d))

& cosh@®) o O=x=d)
K'(x; &) = (40)
sinh(&d) cosh(&(1 — x))
B & cosh&) » [@sxs=1)

Consistent with the leading term LLSR approximation, we have

b(x) = ~a(x) or br(X)= ar(x)= vK(X;&). (41)

a
1+a
Note that in the LLSR range, b(x) ~ b;(x) = vK(x;&) depends only onv
and & (and of course the synthesis region widthd which is assumed to be bxed in
this paper) and not on p and ' . Furthermore, the dependence orv is linear so

that the magnitude of b(x) ~ by (x) varies in proportional to the ligand synthesis
rate. It follows that development would be sensitive to a variation in v (caused by
environmental changes for example) and therefore in some sense not OrobustO. On
the other hand, the sensitivity with respect to the ligand synthesis rate would vary
with the convexity of the gradient and hence with the value of the parameter &.
The signibcance of the actual variation from the combined elect would depend on
how we quantify robustness. We will address the issue of an appropriate measure
of robustness in the next section. For that purpose, the following properties of
K(x; &) will be useful:

Lemma 3.1. For & >0and 0<d < 1, we have

#K/(1; &) #K(0; &) #K(d: &)
TS T < T <
#8& 0, #g -0 and #&

Proof. The brst properties follows from a straightforward calculation of the relevant
partial derivative with respect to &

0.

#K’'(1;&) _  sinh(d&) (1 + &tanh(&)) —d & cosh@d &)
#& B & cosh(&)
d & sinh(d &) tanh(d &) + sinh(d &) — d & cosh{d &)
&2 cosh@)

(1/2) sinh(2d &) — d&

> 0.
&2 cosh@) cosh(d &)

A corresponding calculation gives

#K(0:8) _ h(&d)
#& &3 cos(&)

where

h(&d) = 2 cosh(&(1— d)) cosh(& — 2 cost(&)
+ & sinh(&d) + d & cosh(@) sinh(&(1 — d))
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with
h(&,0)
#h(&, d)
#d

0

—& cosh(&) sinh(&(1 — d))

— & d cosh(®) cosh(&(1 — d)) + & cosh(&d)
< —(1-d)& cosh@) — & d cosh@) cosh@&(1 — d)) + & cosh(&d)
= &?d cosh@)[1 — cosh@(1 — d))] — &[cosh(&) — cosh(&d)]
< 0
The last two properties of h(&,d) imply h(&,d) < 0 for any 0 < d < 1, and the

second property is proved.
For the third inequality of this lemma, we have

#K(d; &) k(&, d)
#& 283 cosH(&)

where
k(& d) = cosh(2&1 — d)) + cosh(2&d) — 1 — cosh(2&)
+ &dsinh(2&(1 — d)) + &1 — d) sinh(2&d)
with
k(&,0) = k(&,1)=0

#2k 3y .

i 4&° [dsinh(2(1 — d)&) + (1 — d)sinh(2d&)] > 0.
The last two properties of k(&, d) imply k(&,d) < 0 for any d in (0, 1), and the third
property is proved. O

3.3. High Ligand Synthesis Rate ( HLSR). At the other end of the spectrum
where the ligand synthesis rate is su“ciently high so that vd is large compared to
max{1, &,&/" }, we have a case of high occupation of receptors and non-receptors
discussed in Q. In that case, the leading term approximation ag(x) for the steady
state solution is determined by the BVP

ap +®8(x)=0, ay(0)=ay(1)=0, (42)
or
_ [ vd@ - 3d) - fvx? (0<x<d)
an(1) = { vd(1 — x) (d<x < 1) (43)
Correspondingly, we have
b(x) = a ay ~1 (0< x<1). (44)

1+a 1+ag
But unlike the LLSR case, the approximation ofb(x) by by (x) = 1 is valid only for
x away from a narrow interval adjacent to the x =1 end. With a(1) =0, a(x) is not
large compared to unity nearx = 1. Except in the boundary layer adjacent to the
wing disc edge,b(x) is seen not to depend on any of the four parameter&,',v and
p to a brst approximation for the HLSR range. As such, development is essentially
insensitive (and therefore robust with respect) to system and environmental changes
that may alect the system parameters. (A formal validation of this observation
will be given after we have formulated a quantitative measure of robustness.)

On the other hand, the concentration of morphogen-receptor complexes responsi-
ble for signaling and development is electively uniform in nearly the entire solution
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domain and would not give rise to patterning. In other words, such a ligand-receptor
gradient, though insensitive to changes, is not a multi-fate signaling gradient and
would not be of interest to the study of real biological systems.

4. Robustness and Multi-fate Morphogen Gradients.

4.1. Normalized Root-Mean-Square Displacement. We saw from the explicit
solution for the LLSR range that the signaling ligand-receptor gradient is generally
sensitive to system parameter changes. Yet actual biological systems are generally
robust to such changes. It is our goal to investigate factors that are responsible
for such robustness. We do so by focusing on robustness with respect to a two-fold
change in the ligand synthesis rate in our model problem as in20]. The general
methodology developed for this parameter change should be helpful to our study of
robustness with respect to other parameter changes.

Let b(x) and B(x) be the normalized signaling ligand-receptor gradients for syn-
thesis ratev and 2v, respectively andx; and x, the corresponding location where
they attain the value 8, i.e., b(x;) = B(x,) = 8. With the change of ligand synthesis
rate, X, is generally dilerent from x; with x; —x; =$ x. The root-mean-square of
$ x over the range ofb(x) would be a meaningful measure of robustness. To mini-
mize the elects of outliers, the range ofb will be taken to be the interval (by s, bs/s)
with by /5 = b(d)/5 and b, /s = 4b(d)/5. The measure of robustness for our analysis,
R, is this root-mean-square deviation normalized by the intervalx(b; 5) — d:

($ X) s 1 1 /b“/-‘
R, = - $ x)2db 45
X(byys) —d  X(by/s) —d\ bass —bis Jy, ) (49)

In general, the displacement $x depends on the normalized signaling ligand-receptor
gradients for the two dilerent ligand synthesis rates v and 2v. Since these gradients
themselves depend also on the parameters' and &, we indicate these dependence
by writing R,(p,', &). It is seen from 45 that the smaller the value of R, the more
robust the system would be. As suggested in2[0], the system is considered to be ac-
ceptably robust with respect to the ligand synthesis ratev if, for a two-fold increase
in v, we haveR < 0.2.

Numerical solutions obtained in [20] for the steady state behavior of System CN
suggest that the corresponding system without non-receptors (System C) does not
have any robust multi-fate gradients for any combination of parameter values. We
will validate this observation in the next section after we quantify multi-fate gra-
dients. Before doing this, we will show that with non-receptors, 1) the signaling
gradient b(x) is generally robust for su“ciently high ligand synthesis rates but the
gradient itself is not a multi-fate gradient, and 2) at low ligand synthesis rates, the
signaling gradient b(x) is generally not robust with a value for R,(p,", &) signib-
cantly above 02 (tending to 0.43 in the limit).

4.2. The HLSR Case. As indicated above, we will focus herein on the robustness
corresponding to a two-fold increase of the normalized synthesis rate of free ligands,
i.e., whenv is changed to Z. For a su"ciently high ligand synthesis rate so that
vd > max{1, &2, &/' }, we have from43

a(x) ~vd(1—x), (d<x<1).
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and therewith
a vd(l-—x) b
~ ~1l—- ———x
a+v1 “vag_w+1 O O vd(l—b)
in the region where ligand is not produced, d < x < 1. When the synthesis rate is
changed fromv to 2v, the displacement $x of gradient at concentration b is given
by

b(x) = (46)

b
X vda—ny
It follows that the relevant robustness measureR,(p,", &) is given by
1 1 bays b 2
Ru(p,, &) =~ {} db
1 %ﬁ;l/) —d \ (bays —b1s5) Jp, . (2dv(1—b)
1 5 4bd/5 b2
174’ud7d 12v d Jby/5 (1-b)

whereb, = b(d). It is easy to see from this expression that the robustnesfk, can
be made smaller than any given positive number ifv is large enough. The result
summarized in the following proposition provides a mathematical justibcation of
the intuitive expectation in subsection 3.3 using R, as a measure of robustness.:

Proposition 3. For vd >> max{1, &, &/' }, the steady state behavior of the model
biological system1BL5 is robust.

However, as indicated in subsection 3.3, the signaling gradient [LR] for such
a high ligand synthesis rate cannot form a OrealisticO biological gradient for pat-
terning since it is nearly uniform for the entire solution domain except in a narrow
region adjacent to the edgex = 1 and at the same time too steep in that narrow
layer. While these observations may be evident from a graph ofi6, we need to
have some quantitative measure for what constitutes a multi-fate signaling gradient
before we can direct our attention to study factors responsible for robustness of
such signaling gradients. We quantify in the next subsection what constitutes a
multi-fate gradient and use the criteria developed and the robustness measufe,
to investigate robustness of multi-fate gradients for the three special cases of high
ligand synthesis rates, low ligand synthesis rates and systems without non-receptor.
The role of non-receptors in promoting robustness for multi-fate signaling gradients
with moderate ligand synthesis rates then be delineated.

4.3. Multi-fate Signaling Gradients. In order to induce spatially dilerential
cell signaling, i.e., a multi-fate signaling gradient, a steady stateb(x) should have
the following characteristics:

1. The slope of the normalized signaling gradienb(x) = [LR] in/% R; that acti-
vates the target gene should not be too steep From 25, we haveh(0) < 1.
Therefore, the average slope af(x) over the interval (0, 1) is less than 1. The
gradient is considered not too steep if the magnitude of the relative slope
|b"(x)/b(x)| in the region of interesting is less than some threshold, i.e.,

D)/ <)t (bays <Db(X) <bass)

for some) > 0.
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2. The concentration of a patterning signal [LR]i, should be higher than a certain
threshold in the vicinity of the ligand production region Before the onset of
morphogen, the concentration of receptors inside the cell ([R]) equal to R;.
Thus, the threshold can be assumed to be a fraction oR;. From 25, we see
that [LR] i is generally less tharfg R; and approaches%s R; from below when
[L] is large enough so that we are near receptor saturation. Hence, for diler-
ential cell signaling, the concentration [LR], threshold can only be a fraction
of %2 R;. We let that threshold fraction be * (< 1) so that mathematically
the signal is activated if b(d) > * with 0 <* < 1.

3. The slope of a(x) at x = 1 should be substantially less than unity Experi-
mental results had shown that the Dpp form shallow gradient in the imaginal
disc [9, 29). These results suggest that the free ligand decays quickly in the
imaginal disc in steady state. Motivated by the corresponding relation for
the LLSR case, we expect that the slopea’(1) should be considerably less
steep than the average slope of free ligand gradient over the rangd,[1], i.e.,
|a’(1)] < aqz/(1 — d) where a; = a(d). It seems reasonable to stipulate
|a’'(1)|/ag < 1 with ag =[a]p=9 = */(1 —*).

The observation above suggest that we quantify the characteristics of a multi-fate

gradient by the following depPnition:

Debnition 4.1. The normalized signaling gradient b(x) is said to be amulti-fate
gradient if the steady state solution of the model System CN, debned by2-25
satisbes the following conditions:

() [b'(x)/b(x)| < % if (byys < b(X) < bas),

(1) b(d) =~,
(1 |a’'(1)| < +a for some+<« 1.

In terms of the free morphogen concentratiora(x), the conditions above take the
form

(10) fa(1 + a) 2| >) if (5%, < @) < 1),
(110) aqg >ap=*/(1-%),
(N0) |a’(1)| < +& for some+< 1.

For the purpose of obtaining specibc results, we will take = 0.05, * = 0.1(or
ay = 0.11), and + = 0.002. While these choices of parameter values may seem
somewhat arbitrary, we will see that the results are not particularly sensitive to our
choices.

Debnition 4.2. For any p in [0,1] and' > 0, the parameter pair (&, V) is said to
be acceptableto (p,') if the signaling gradient of the model System CN for this
particular set of four parameters is a multi-fate gradient.

Upon application of this debnition of a multi-fate gradient to the HLSR case, we
see immediately that

Proposition 4.  If the normalized ligand synthesis rate is sulciently high to ensure
robustness, the relevant signaling gradienb(x) is not multi-fate.

Proof. For this case, we have from43 |a’(1)| = vd and +& < +a; = H{vd(1 —d)] <
|a’(1)| (see also47) so that the third condition for a multi-fate gradient above is
not met.

O
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Proposition 4 is a negative result. To gain insight to robust development, we
need to quantify the ranges of the four parametersp,’,&, and v for which the
corresponding gradients are capable of dilerential cell signaling, i.e., for which they
are multi-fate, by the requirements of Debnition4.1. The following theorem provides
the quantibcation sought:

Theorem 4.3. For any p in [0,1] and any' > O, let

. fe@r)? 0202
)= ¢ 27E(@

, (48)

a=ap/(5+4 ap)

and let & to be the (unique) positive solution of

& = &/F(VK(0; &) (49)

(see Lemmab.1 below). If any pair (&,V) lies in the region
+
0<&<%p,"), ot Svgae} (50)

Cra” {(&' K K(d:&) -K'(1;&)
of the (&, V) space, then(&, V) is acceptable to(p," ).

This theorem is proved by verifying the requirements of multi-fate gradients; the
proof will be given in Subsection A.3 of the Appendix.

The two parameters & and a; = a(d) depends on& and v (and of course on the
bPxed parameterd as well), the former by way of 49 while the latter by way of 37,
or the corresponding approximate relations

&2
dqg = adg — 7 E(ao),
and
/"“ du
d = 1
aq /282 (E(u) — E(a0)) — 2v (u — ao)
which follows from 34. G, ., as debned by50is thereforenot an explicit specibcation

of the range of acceptable &,v). An explicit specibcation of G, ., is derived in
Subsection A.3 of the Appendix.

4.4. The LLSR Case. In this section, we examine how the quantitative require-
ments of a multi-fate gradient applies to the LLSR case and what the resulting
expressionR,(p,', &) tells us about the nature of steady state signaling gradient
robustness when the normalized ligand synthesis rate is increased two-fold. For this
case, we have from4l that b, (X) = ap(x) = vK(x;&) with K(x;&) determined
by the BVP 38. While K(x; &) is given explicitly by 39, it turns out to be more
elective to work with x(a) as in Subsection3.1 for the purpose of calculating $x
and R,(p, ', &). By the method of that subsection, it is straightforward to obtain

ad du
x(@a)—d = _— Xx>d
@ /a s? + &u? ( )

1 (&aﬁ Vi) + &Z[adF)

& &a+ /s?(v) + &a?

&
Vv sinh(&d)
&cosh(&)

where

si(v) = a'(1) = (51)
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emphasizes the dependence & on the normalized ligand synthesis ratev (and
of course on& as well). For the LLSR case,a(x;p,"', &, V) is proportional to v; it
follows that

8% = xz,(a) ~ x,(@)= " 2)
Correspondingly, we have from45and b ~ a
1 1 bass
R,(p," &) = / $ x)2db
(", &) Xy(by/5) —d \/bA/S —bis Jo, s #
$ x _In(2) (53)

Xy(ayss) —d - In(r)
with

&ag+ \/[s1(V)]? + &[a P
&ay /s + \/[s1(V)]Z + &ay ]2
For low ligand synthesis rates, we have froma; ;s = a,/5 and, from the second
and third condition for a multi-fate gradient, [ si(v)/&ag]? < [s1(v)/&aq/5]? <
[(5/&)(a'(1)/ag)]? = O(+#) < 1 so that

P St V&P o
T &ay s+ \/&ay 5]

In that case, 53 becomes

R.(p,". &) > In@2) _ 0.43067..

~ In(5)

independent of the system parameters except for th&LSR requirement of
v
2 < 1
SinceR,(p,', &) < 0.2 is required for robustness, we have the following theorem:

Theorem 4.4. In the LLSR range with v/& < 1, any multi-fate signaling gradient
is not robust to a doubling of ligand synthesis rate.

See P1] for the possibility of size-normalized robustness for the LLSR range.

5. Systems without Non-receptors. Theorem 4.4 ruled out the possibility of a
robust multi-fate signaling gradient in the LLSR range. At the HLSR range, it is
possible to have robustness by taking/d su“ciently large. However, Proposition 4
tells us that such a signaling gradient would not be a multi-fate gradient; it would
not be capable of inducing dilerential cell signaling for patterning. Together, they
limit the ligand synthesis rate to a moderate range ofv values. In the moderate

v range however, the BVP for the steady state solution does not admit simplibca-
tions that would lead to an explicit solution or useful tool such as a steady state
proportional to the ligand synthesis rate. Nevertheless, certain simplibcations are
still possible in the robustness calculations. In this section, we deduce some of these
simplibcations and use them to analyze the level of robustness possible for a system
without non-receptors, i.e., for System C (instead of CN).
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5.1. Bounds on a(x;&,v) and a’(x;&,v). To simplify the expression for R,,, we
need to establish brst some upper and lower bounds on the steady state free ligand
concentration a(X; &, V) and its derivative a’(x; &, V). Let

& = &+/F(vd), and & = &,/F(VK(0;&_,)), i=1,2,3,---. (54)

with K(0;&) > 0 from 39, Since Theorem2.1 requires 0< a(x; &,Vv) < a,(x) for
any & =0 and hencev K(0;&}) < a,(0)(= vd) by the Comparison Theorem A.2
proved in the Appendix of this paper, we have

1785 = \[F(VK(0; &) /F(val) > 1.
With #K(0; & /#& <0 from Proposition 3.1, we have also

&/8; = \[F (vK(0;&)) /F (VK (0; &)) > 1
and similarly
O<& <& < <& <.---<&

with the last inequality follows from the 54 and the fact that /F(a) < 1 fora > 0.
The monotone increasing positive sequencé&’} bounded above by& has a limit
&*; it is the solution of the equation

& = & /F(vVK(0;&)). (55)

Note that 55 has only one solution since the right hand side is a decreasing function
of &*. Altogether, we have the following lemma:

Lemma 5.1. The monotone increasing positive sequence debned by is bounded
above and therefore has a positive limi&* (&, v) < & which is the unique solution of
55.

The limit &"(&,V) enables us to deduce an upper and a lower bound for both
a(x;&,v) > 0anda’(1;&,v) <O0.
Lemma 5.2. For the solution & of 55, the two inequalities
vK(X;& < a(x;&Vv) < vK(X; &) (56)

vK/(1;&) < a(1;&vVv) < vK/'(1;8) (57)
hold (with vK(x; &) > 0 and vK’(1; &) < 0).
Proof. Let wq(x) = vK(x;& and w»(x) = v K(x; &;). These two quantities satisfy
the equations

Wi (x) — & wa(X) + @(x) =0, w;(0) = wi(1)=0 (58)

and

W5(X) — &7 wWa(x) + @(x) =0, W5(0) = Wa(1) =0 (59)
respectively. From Theorem 2.1, we have 0< a(x) < vd which requires %2 <
& F(a(x)) < & given F(vd) < F(a). Upon applications of the Comparison
Theorem A.2 to the three BVP 58, 59 and 22-24, we obtain

0<vK(x; & <a(x; & V) <vK(X; &) <VvK(O,&).
Repeat the argument fori=1,2,---, we have

0<VvK(x;& < a(x; & V) < vK(x &) <vK(0,&)
for all i and 56 is obtained by letting i tend to inPnity.
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The relation 57 is deduced from the following two inequalities:

. &,v) —0 . K(x;& — 0
a'(1;&v)= lim axi&v) 0 < lim VKOGE -0 vK'(1; &)
z—1— X—1 z—1- X—1
and
. &, v) —0 _ K(x;&) -0
a(1;&,v)= lim ax&v) —0 > lim vKO6&) -0 vK'(1;&).
z—1- X—1 r—1— Xx—1
O
5.2. Simplibcation of R,(p,', &) for a multi-fate gradient. Lemma 5.2 above

and the requirements of a multi-fate gradient place a restriction on the magnitude
of &

Lemma 5.3. In order for the signaling gradient to be multi-fate that satisPest+ <
|K’(1; &) |/K(d;0) for some &, it is necessary that& > & so that|a’(1)/& < +&/& <
+3/8 .

Proof. Since a'(x;&,v) < 0, we have from 57 that |[vK'(1;&| < |8'(L; &, v)| <
v K’(1;&")| so that
VK'(1; &) < +a (60)
if the third condition of a multi-fate gradient is met. Similarly, we have from 56
0<vK(x; & < a(x; & Vv) <vK(x; &) so that
VK(d; &) > ay. (61)
if the second condition is met. It follows from the hypothesis on+ the two condi-
tions 60-61, and Lemma 3.1,
/ . / . / .
KGO, [KLE K8
K(d; 0) K(d; &) K(d; 0)
Therefore, we must have& > & by Lemma 3.1 and therewith |a/(1)/&| < +a/& <
+a/4. O

We are mainly interested in the application of the lemma to multi-fate gradients
for which +< 1. For example, we have& > & ~ 7.0 for +=0.002.
For a > a;/5 = aq/(5+ a4) (corresponding tob = by /5), we have from 35

2E(a) > 2E(ay/s) > 2E(ag/(5 + ag)) = (ap/5)?
when ag < 5 and, in view of Lemmab.3,
(@'(1)? < 28”E(a) for a>ays

given + < &/5. In that case, the expressions33, 37, and 34 may be approximated
by

Xy 1 @e<a<ay (62)
da = \/2&E(a)’ /8 =% ="
&2
a—ag VE(ao) (63)

and

X(a, & V) = d+ (a15s <a<ag), (64)

1/“"’ du
& J, +/2E(u)
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respectively, and therewith

R 1 [wa@v gy o
X = ,
V2& /ad(v) VE() (69)

which is a constant (instead of a function ofb or a) that depends only on the four
parametersp,', &, v (and of course the known constantd). Here we write az(Vv)
for a(d; &,v) and a4(2v) for a(d; & 2v) for short. (Note that az(v) and a;(2v) also
depend on the parameterg and' since E(u) depends on these two parameters as
well.) This allows us to simplify the robustness measureRr,(p, "', & ) debPned in45to

$x
X(ay5) —d’

The simplibcations are analogous to the corresponding results obtained previously
for the LLSR case but now for general/ values. We will use the simplibed expression
66 and the original debnition indistinguishably for R,(p,',&) in all subsequent
analysis as we are interested only in multi-fate signaling gradients. Use &84 and
65 is then made in 66 to result in

Ru(p,", &) & (66)

Debnition 5.4. For a multi-fate signaling gradient, the robustness to the doubling
of ligand synthesis rate is debned as

/ad(z Y du
as(v)  /E(U)
/ad(v) du )
s VE(U)
Unlike the LLSR case, the steady state gradients(X; &, V) and b(x; &, v) are not

proportional to the ligand synthesis rate v. Nevertheless we can establish the change
in az(v) when the ligand synthesis rate is doubled:

RT9(p,", &) = (67)

Proposition 5.  For x € (0, 1),we havea(x; &,2v) > 2a(X; &, V).

Proof. Let
((¥) = a(x; &,2v) —2a(x; &,V)

then ( (x) satisbes

(" =& F(a(x; & 2V)) ((x) +2 & [F(a(x; &, V)) — F(a(x; & 2V))] a(x; &, V) =0

and
('(0)= ((1)=0.
Since
& F(a(x;&2v)) >0
and

282 [F(a(x; &, V)) — F(a(x; &, 2V))] a(x;&,V) >0

givena(x; &,2v) > a(x; &, V) by 29and dF/da < 0 by 27, Theorem A.1 is applicable,
and hence( (xX) > 0 or a(x; &,2v) > 2a(x; &, V). O
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5.3. Ry(p,', &) for System C. Let
R(p,") =min RY*(p,", &).

where minimization is taken over all acceptable pairs of&, v} that ensure a multi-
fate signaling gradient. Note that if R(p,') > 0.2, then R9(p,", &) is always
larger than 0.2 for any admissible pair &, v) that ensures a multi-fate gradient. In
that case, it would not be possible to bPnd a parameter pair &,V) such that the
steady-state is both multi-fate and robust. On the other hand, if R(p,' ) < 0.2,
there exist (&, V) parameter pairs such that the steady state signaling gradient is
both multi-fate and robust. Consequently, the quantity R(p,') provides a more
succinct measure of robustness and is used subsequently whenever appropriate.
In the absence of non-receptors so thap = 1, numerical simulations carried
out in [20] suggested that all multi-fate gradients arenot robust with respect to a
doubling of the ligand synthesis rate (see also[l] for a dilerent kind of robustness
for low synthesis rates). The theoretical lower bound of the robustness measure
R(p,") in the absence of non-receptors is given below to validate this observation:

Proposition 6. Let
% du

Je  /E(u)
T
/Mg VE(u)

Then for any p in [0,1], and' > O, we haveR™9(p,", &) > R(p," ) = JI(p,"' ), with
J(1,") > 0.35

J(p.") = min,

Proof. We have from Proposition 5 ad(2 V) > 2ay4(v). Then for any pair of (&, V),

RI*9(p,", &) =

/ad(Z v) 2 aq(v)
aq(v E(u aq(v E(u
aw) ( a(v) fj > 30,0,

/ad(v) du /ad(v) d
5+‘14da(”(v> v/ E(u) Hﬁdi% v E(U)
and henceR(p,' ) > J(p,"' ). When p =1, we have

E(u) = u—log(1+ u)

and J(1,"' ) can be determined numerically to be (0354527.. or) greater than 0.35.
O

As a direct consequence of Propositiof, the robustness measurd&*9(p, ', & ) of
System C can not be lower than 035 for any acceptable pair of &, V). In other word,
without non-receptor, any multi-fate gradient of System CN (which, without non-
receptor, is reduced to System C) cannot be robust. Quantitatively, the robustness
of System C (or System CN without non-receptors) has a lower bound of .G5
for RI™9(p,", &) for all parameter sets with a multi-fate signaling gradient. The
simulation results of System CN show that this lower bound forR}'*9(p, ', & ) can be
lowered considerably to well below @ with the addition of non-receptor for certain
parameter sets. Experimental results also show that non-receptor is essential in
forming robust morphogen gradients of Dpp in the wing disc of Drosophila (see
[1, 2, 3, 4, 10, 12, 14, 16, 17, 28, 30]). The theoretical results for System CN of
the last few subsections mean that robustness can only be attained for relatively
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moderate values of the normalized ligand synthesis rate. They help to limit our
search in the next section for a region (or regions) in the parameter space where
robust multi-fate gradients can be found.

6. The Role of Non-receptors. From the results of the last section, we know
that robust multi-fate gradients are not possible when there is no non-receptors in
System CN (leaving us with just System C). From the earlier section, we also learned
that multi-fate gradients are also not possible for low or high occupation of both
receptors and non-receptors. If non-receptors should be responsible for robustness,
the results of numerical simulations in R0] suggest that it would be occur at a level
of high receptor occupancy (by ligand) and low non-receptor occupancy. We prove
in the Prst subsection that low non-receptor occupation is necessary for robustness
while su'ciency requires some additional consideration as we show in the next
subsection.

6.1. Non-robustness in Parameter Space. Given RI™9(p,", &) > R(p,") >
J(p,' ) by Proposition 6, signaling gradients cannot be robust for pairs p," ) for
which J(p,") > 0.2 (for all acceptable &,Vv)). The graph in Figure 1 shows that
J(p,") is an increasing function of' . Thus, the (p,"' ) plane can be divided by the
curve J(p,' ) = 0.2 into two regions. Numerical computation shows that the curve
J(p,' ) =0.2 can be approximated by

0.0932 %14 — 1139 — 1.755 2
= = pr(’ ‘< 0,05 := 68
P 0093209 —0139 —17552 P () B)  (68)

In other word, RI™9(p, "', &) is always larger than 02 whenever' > g or p > p*(" ).
To bring out the role of non-receptors in robustness more explicitly, we introduce a
ratio of receptor-to-non-receptor (elective) synthesis rate

PR R/ KK
1_p "Kl "N/(l"'jg/jq).
and express the condition for robustness in terms of and - (instead of' and p up
to now). In terms of ' and -, the condition p > p*(' ) becomes- > - *(* ) with

-*("):=0.0932 %% _ 1139 —1.755 2. (70)
and we have the following su'ciency result for non-robustness:

(69)

Proposition 7. If ' > or - > -*(") (= 0), then R,(p,"',&) > 0.2 so that
multi-fate signaling gradients are not robust.

The two su"cient conditions for non-robustness, ' > @ and - > - *(* ) (when
' < ) may be rephrased as the following necessary condition for robustness :

Proposition 8.  For a multi-fate signaling gradient to be robust (withR™9(p,*, &) <
0.2), it is necessary that (',- ) to be in the region{0 < - = "A/"§ < -*("),
0<'< W} of the (',- )-plane (or (p,") in the region {0 <p <p*('),0<'< g}),
where g is found numerically to be0.05 for the set of values),* and + specibed in
Section 4.

Remark 1. Note that the boundary of the non-robustness region is found by solving
the equation J(p,') = 0.2. This boundary does not depend on the biological
parameters & and v, and the parameters*, + and ) introduced in Subsection 43 to

debne a multi-fate gradient. However, a multi-fate gradient is required when we
write robustness in the form of 67 specibed in Debnition5.4. As a consequence, the
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Figure 1. The function J(p,' ) in Proposition 6.

non-robustness range (with the parameter g= 0.05) in Proposition 8 is insensitive
to the choice of*,+and).

6.2. Region of Robust Multi-fate Gradients. As a direct consequence of Propo-
sition 8, multi-fate gradients of System CN can be robust only if the two nonnegative
parameters' and - are both small enough with 0< - < -*(*). With - being a
measure of the relative infusion of receptor to non-receptors, this means that non-
receptors should play dominant role in forming the multi-fate signaling morphogen
gradient. We show below that this condition is alsosulcient for robustness.

Theorem 6.1. If Ggp is not empty in the (&,V) plane, there exists a neighbor-
hood U of the origin of the (‘,p ) plane and a continuous functionC,(p,', &) with

Cy(0,0,& = 0 such that R™9(p,", &) < 0.2 for any pair (p,") in U and any ac-
ceptable pair(&,Vv) (in G, , for a multi-fate gradient) with

27 & cosh@)

~ Z sinh(@d)sinh(&(1 — d)) Co(p, ", &). (71)

Moreover, therg_ exist a non-empty region@ of the (p,' ) plane such that for any
pair (p,") in O, there is at least one acceptable paif&,v) in G, . for which
RT™9(p,", &) <0.2.

Proof. From its debning expression,R,(p,', &) is continuous in all four variables
shown. It su"ces therefore to prove that R]™9(p,", &) < 0.2 for (&,V) in Ggo and
for
_ 2 & cosh@)
4 sinh(&d) sinh(&1 —d))

(72)
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Figure 2. The parameter ranges for multi-fate gradient and ro-
bust multi-fate gradient with given p and' (the points with robust
multi-fate gradient are marked by dots).

At the origin, (0, 0) of the (p,"' ) plane, we have
F(@=1, E(u)= %uz.

Substitute E(u) = u?/2 into 67, we have

log 2
log(5+4a(d; &, V)

RI™9(0,0,&) =

Since
v sinh(&d) sinh(&(1 — d))
&2 cosh@) '
the hypothesis 72 implies a(d; &, v) > 27/4, and thereforeR['*9(0,0,&) < 0.2. O

a(d; &,v) =

It is easy to have

Go70 = {(&, V)

2 £
0<&<%(Q0), — oo _ <&*h<&>}

sinh(&d) sinh(&1 —d)) — /ag < sinh(&* d)
While we choose parameterst= 0.002) = 0.05,ay = 0.11 andd = 0.06, the set
Go,o0 is non-empty(Fig. 2).

If we use another valueR.. instead of 02 as the upper bound for robustness, then
71 should be replaced by
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2Y/R. _ 5 & cosh@) ,

V> sinh@dsinh&d —ay TSP &) (73)
possibly with a dilerent function Cy(p,', &) and the conclusion of Theorem6.1 still
holds.

Whenpand' are small enough, we can, by Theorens.1, always Pnd parameters
(& V) in G, such that the system has robust signaling gradients. The regiord
can be found numerically from Theorem9 in the Appendix. The results for sample
points on the boundary of @ are given at Table 1 (see also Figure 3(a)). From
Theorem 6.1, for any pair (p,' ) € O, there exists a function C,(p,",&) (depends
on the parametersd, +,),* as well) such that when &,v) € G, and is bounded
above and below by two curves:

27 & cosh@)
4 sinh(&d) sinh(&1 — d))
then the pair (&,V) is acceptable to (p,' ). For parameters studied in this paper,

numerical computation shows that the curvev = C,(p, "', &) is identical to the upper
bound of the regionG, , (See Figure?).

+ Cb(p!'!&)<V<Ca(p!I!&) (74)

Table 1. Parameter range for good robustness.

p 0.05 0.10 0.15 0.20 0.25 0.30 0.35 040 0.41 042 0.43
a0’ 76 72 67 62 57 48 35 17 12 07 O
For each value of p, the maximum value of ! (with unit 10 ' ®) is given. The scheme
of the value ! for given p is as following. We examine each! increasing from 0 with
step 0.0001 and check for each pair 6,!) the values (",v) from the boundary of the
region Gy, . If there is (",v) such that the robustness is less than 02, we consider
(p,!) ! G, otherwise, (p,!) " G. The values ! given here are maximum of those
pairs (p,!) ! @ for given p. Note that in the limit of p# 0,! tends to a Pnite limit
mathematically but is not biologically realistic.

From Table 1, the domain @ can be given approximately by (see also Figure
3(a))
0.769 — 39,925 2 — 699296 3
1.769 — 39.925 2 — 699296 3"
Furthermore, from the numerical results (nhot included herein), the function C,(p,",&)
can be approximated by

Co(p,"s &) = Cpr(p," ) + Cp2(p," ) sinh(&d) (76)

where {Cy;(p,' )} are, respectively, ratios of second and brst degree polynomials of
p and' . In particular, we have Cy(p,', &) > 0. The function Cy(p, ', &) is found by
minimizing the square error. 2 = Y, |ri|2 wherer, are the dilerence between each
original data point and its btted value. In our sample study, we have used over 4300
data points giving only a 7% square error forC, (see Figure4). The upper bound
C.(p.', &) in 74is consistent with the upper bound of G, , with analysis formulate
given in Appendix A.3.2 (See Proposition9).

In terms of -, the relations 74-76 can be rewritten as (see also Figure 3(b))

_ 2 & cosh@) N
4 sinh(&d) sinh(&1 — d))

(75)

CB(-ili&) (77)
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Figure 3. The parameter range for good (region ORO) and bad
(region ONO) robustness. (a) The range in the,{) space. (b)
The range for the (,- ) space. The region of ONO means that for
any (p,") (or (-,")) from the region and any (&, Vv) acceptable to
(p,"), the system is not robust for the two fold of ligand synthesis
(Ry(p, &,V) > 0.2). The region of ORO means that for ang,( ) (or
(-,")) from the range, there exist (&,V) that acceptable to (p,')
such that the system is robust for the two-fold increase of ligand
synthesis R,(p, &,Vv) < 0.2). In (b), the circles are original data
from the simulations, and the dashed lines are btted values through
70 and 78, respectively.

(and of course &,v) € G, ,) and
- < 0.769 —39.925 2 — 699296 ° (78)

with

Cr(-"&) = Cu(r——" )+ Cia(——.")sinh(&d) (79)

'+
The results in Proposition 7 and Theorem 6.1 and the relations 78 and 77 are
summarized in the following theorem.

Theorem 6.2. For System CN, we have either

(1) R, > 0.2 (and consequently no robust multi-fate gradients) if the positive
parameter - = p'/ (1 — p) satisbes the inequality

->0.0932 %14 _ 1139 —1.755 ?,

or

(2) R, < 0.2 (so that the relevant multi-fate gradients are robust) if (i) the condi-
tion 75 is met, (ii) the parameter pair (&,V) is acceptable to(p,' ), or equiv-
alently, the pair (&,V) satispes74 with the function C, in 74 accurately ap-
proximated by 76 (with C, to be the upper bound o, ,).

The two conditions (i) and (ii) in the part (2) of Theorem 6.2 may be given in
terms of - instead of p in which case74, 75 and 76 would be replaced by77, 78 and
79, respectively.
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Figure 4. The original data and btted values of the function
Cy(p,', &) in 76.
7. Concluding Remarks. In this paper, we examine the robustness of steady

state morphogen gradients capable of dilerential cell signaling with respect to a
two-fold change of morphogen production rate. Quantitative measures of multi-
fate signaling gradients and robust of signaling gradients are specibed and used to
delineate the occurrence of robust multi-fate gradients in the parameter space. By
mathematical analysis, we succeeded in validating the simulation results inZ0].
The main result is Theorem 6.2 which assures the existence of robust multi-fate
signaling gradients if and only if the two parameters- and ',

' $R km _ " R kq/(kg + kq)

$ij - "qu/(jg-"jq) .
are both su"ciently small in a specibed range. Biologically, the required conditions
are met by

1. a receptor degradative Bux su"ciently low relative to that of non-receptor,
and

2. the synthesis rate of free ligand is su”ciently high(for high receptor occupancy
at the vicinity of the ligand production region), but not too high to saturate
available receptors in signaling cells.

Together, they imply that System CN can have robust multi-fate gradients only
if the non-receptors play a dominant role in forming the gradient.
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To specify the role of non-receptor in robustness, we write down the equation for
b(x) with x in (d, 1):

b
1-b
for (d < x < 1) with b(1) = 0. Evidently, 80 is unalected by any change of the
normalized ligand synthesis rate sincev does not appear explicitly in the equation.
Consequently, its solutionb(x; &, v) depends onv only through the auxiliary condi-
tion at x = d. Let by(v) = b(d; &,v) and by(2v) = b(d; &, 2v); then we would have
good robustness as measured bR, (p, &,") if by(v) ~ bs(2v). Recall that

aa(V) aq(2v)
1+ ag(v) 1+ ay(2v) '

For the LLSR case, we have from Subsections 3.2 and 4.4

ba(v) = ag(v) ~ vK(d; &), ba(2v) = a4(2v) ~ 2vK(d; &)

(1 —b)3p” — 2(1 — b)b’® — &2b(1 — b)2F(

)=0, (80)

ba(v) = ba(2v) =

so that we haveby(2v) ~ 2b,(v) and hence the gradients are not robust. At the
other end of the spectrum, we have from Subsection 3.4;(v) ~ bs(2v) ~ 1 for the
HSLR case except in a narrow layer adjacent to thex = 1; the system is therefore
robust. But we saw in Subsection 4.2 that the signal gradient is not multi-fate
given vd > max{1, &, &/' }. Thus, a robust multi-fate signaling gradient requires
a ligand synthesis ratev that is 1) high enough to induce a su“ciently high re-
ceptor occupancy so that the (normalized) level of ligand-receptor concentration is
insensitive to a substantial variation of v, but at the same time 2) not too high
to saturate the available receptors so that the signaling ligand-receptor gradient
remains multi-fate. As long as there are unoccupied receptors, high ligand syn-
thesis rate would continue to produce more ligand to saturate them unless these
additional ligands can be otherwise engaged and (proportionally) unavailable for
binding with the unoccupied receptors. The presence of abundance of non-receptor
with strong a"nity for binding with ligand and for rapid degradation of the result-

ing non-signaling ligand-non-receptor compounds provides the mechanism to deralil
free ligands from association with signaling receptors. Numerical simulations in20]
support this scenario while the analysis of this paper delimit the region in the four
dimensional parameter ¢,', &,V ) space favorable to the occurrence of such robust
multi-fate signaling gradients.

The presence of abundance of non-receptor with strong a"nity for binding with
ligand and for rapid degradation of the resulting non-signaling ligand-non-receptor
compounds can be a mechanism to derail free ligands from association with re-
ceptors to result in robust development of other biological organisms. While the
mathematical analysis leading to the delimitation of region in the parameter space
favorable to the occurrence of such robust multi-fate signaling gradients may or
may not be applicable to other gradient systems, the quantibcation of multi-fate
signaling gradients and robust measures should remain central to robustness studies
of the biological developments based on appropriate signaling morphogen gradients.

Appendix A. Comparison Theorems.
Theorem A.1. Consider the boundary value problem
u’ —q(x,u)+ f(x)=0, u'(0)= u(@)=0. (81)
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If g(x,u) is continuous with respect to x and u, and

for all x in [0,1] and u > 0 with q,, = #g/#u, then the solution of 81 exists and is
unique. Moreover, the solutionu(x) satisbes the inequality

0 < u(x) </: /Osf(t)dtds

for all x in [0, 1].

Proof. Let
B(x) =0, u(x)= /1 /Sf(t)dtds.
T 0

It is easy to verify that @(x) and u(x) are, respectively, upper and lower solution
of 81. Existence of a solution follows from a theorem of Sattinger (Theorem 2.1 of
[27]), and the solution satisPesugx) < u(x) < u(x).

To prove the uniqueness, assume that we have two solutiong; (x), uz(x). Let
W(X) = ui(X) — ux(x); then w(x) satisbes

W (x) —g(x)w(x) =0, w'(0)= w(1)=0

where

4(x, U (X)) — q(X, Up(X))
we) U

by g .(x,u) > 0. Hence, we have

9(x) = (0<x<1)

1 1
/W(x)w”(x)dx—/ g(x) w(x)2dx = 0.
0 0

Integration by parts gives

1 1
/ (W'(x))%dx + / g(x) w(x)2dx = 0.
JO 0
With both integrands non-negative, we concludew(x) = 0, for all xin [0, 1]. O

The following result for the comparison of solutions of two dilerent BVP in
dilerential equation is a direct consequence of maximum principle (Theorem 4.1 of

[2€]).

Theorem A.2. If & (X) = &(X), and if wi(x) > 0 and w»(x) are solutions of the
BVP

Wi (X) — & (X)wi(X) + v(x) =0, wy(0)= wi(1)=0
and
W5 (X) — & (X) W2(X) + v(X) =0, w,(0) = wz(1) =0,

respectively, thenw;(x) < w,(x), Vx € [0, 1].



ROBUSTNESS OF SIGNALING GRADIENT 863

Appendix B. & Monotone Decreasing with V.

Lemma B.1. Let &(&,V) is the unique positive solution of49, then

#&*
<0.
#v 0
Proof. Upon dilerentiating 49 with respect to v, we obtain
#& & F'(vK(0; &) K(0; &)
#v  2& — &VF/(VK(0;&)) K, (0; &)
& F (v K(0; &) F'(v K(0; &) K(0; &)
28 F(u,w) '
where K, = #K/#y, F(u,w) = F(u) —wuF’(u), and
_ o _ &K,y (0;&) _#K
u=vK(0; &), w = 2K &) Ko = ry

Since F(a) >0 andF’(a) <0 fora >0, it is su"cient to show that F(u,w) > 0.
We brst observe thatw > —1. To this end, we note

2K(0; &)(w +1)

= &K, (0;&) +2 K(0; &)
cosh@* (1 — d)) sinh(&*) — (1 — d) cosh(&*) sinh(&* (1 — d))
& cosltf (&)
cosh@* (1 — d)) sinh(&") — cosh@&*) sinh(&* (1 — d))
& coslt (&)

sinh(&* d)
& costt (&)

from which we getw > —1.
Next, we see fromF’(u) < 0 and 28

F(u,w) > F(u)+ uF’(u) = (uF(u)’ = 0.

Hence, the theorem is proved. O

Appendix C. Region of (&,Vv) Acceptable to (p,').
C.1. Proof of Theorem 4.3.

Proof. We prove the theorem by verifying the requirements {IO, 110 ,11i0of the
debnition of a multi-fate signaling gradient are met. First of all, when (&,Vv) € G
we have from50 and 56

b,y

aq > vK(d; & > ay (82)
and from 57 and 50
@'(1)] < [VK'(L; &) < +a
TherefoEe the requirements 110 and 1110 are satisbed.
For 10, we note that the function
u(u+1)
V282E(u) + (@'(1))2

H(u) =
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is an increase function whenu > 0 (see the proof below). If & Vv) € G, so that
& < %(," ), we have

dx a(a+1) a(a+1)
a(l+a)—| = > =)
da|  2@E@+(a(@)? ~ V2ZE@+(@D)?| ., 6.
when ay/(5 + 4ay) < a(x) < 4ay/(5+ ag), and hence 10 is also satisbed.
The fact that H(u) is an increase function is given below. We have
& (a(1)*(u+1)
/ -
H(u) = (2&2E(u)3/2 + a/(1)2)3/2 h(u) + (2&2E(u)3/2 + a/(1)2)3/2
where
h(u) = (4 u+2) E(u) — u?(u+ 1) F(u)
By h(0) =0 and
h'(u) = 4E(u)+(4u+2)uF(u) — (3u?+2u)F(u) — u*(u+1)F’'(u)
= 4E(u)+ U*(F(u) — (u+1)F'(u)
> 0
we haveh(u) > 0 and thus H’(u) > 0. O
C.2. Explicit Characterization of G, Let
ady
=0 ' e A

& =%(p," ), v1(&) K(d: &) (83)

and v,(&) to be the solution of following equation for v
T
v =0 (84)

+ S
K'(1; & (&, V)

where &" is the solution of 49 and is therefore a function ofp,',& and v. In
particular & does not depend orv.

Proposition 9.
Gp~r= {(&V)|0<&< &, V1(& <V < V(&) }. (85)

Proof. First, for (&,V) in the part of the parameter space originally debPned in50,
we want to show that (&, V) is in G,  as specibed by85. In this case, it is evident
that & < & and v > v1(&). We only need to show thatv < v,(&). But from
Lemmas3.1 and B.1, we have

+ + !/ - QX *
# @ ] y  HK(LE) #E (@6)

| TKLEGY) | - (K@Le)? #&  #v

and, given the upper bound onv in 50,

v+7a"<0 <v++a">>o
K/'1;&) — #v K’(1; & (&, V))
which implies v < v,(&).

Conversely, suppose &, V) is as specibed by84, then the condition on & and the
prst half of the condition on v in (50) are met. For the remaining upper bound on
v, we have from
& &

VEVEE TG e e wn@) K& )

(87)
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with the last inequality assured by 86 givenv < v,(&). Thus, if the parameter pair
(&, V) satisbes85, it also satispes50. O

To determine the set G, ., for a given pair of (p," ) by Proposition 9, we only
need to Pndv;(&) and v»(&) for any & € [0, &] from the second relation in 83 and
84, respectively. Sample regions for several pairs op(' ) are given in Figure 2.
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