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Abstract Growth of developing and regenerative biological tissues of different cell types is
usually driven by stem cells and their local environment. Here, we present a computational
framework for continuum tissue growth models consisting of stem cells, cell lineages, and
diffusive molecules that regulate proliferation and differentiation through feedback. To deal
with the moving boundaries of the models in both open geometries and closed geometries
(through polar coordinates) in two dimensions, we transform the dynamic domains and gov-
erning equations to fixed domains, followed by solving for the transformation functions to
track the interface explicitly. Clustering grid points in local regions for better efficiency and
accuracy can be achieved by appropriate choices of the transformation. The equations result-
ing from the incompressibility of the tissue is approximated by high-order finite difference
schemes and is solved using the multigrid algorithms. The numerical tests demonstrate an
overall spatiotemporal second-order accuracy of the methods and their capability in captur-
ing large deformations of the tissue boundaries. The methods are applied to two biological
systems: stratified epithelia for studying the effects of two different types of stem cell niches
and the scaling of a morphogen gradient with the size of the Drosophila imaginal wing disc
during growth. Direct simulations of both systems suggest that that the computational frame-
work is robust and accurate, and it can incorporate various biological processes critical to
stem cell dynamics and tissue growth.

Keywords Interfacial motion · Tissue modeling · Multigrid · Cell lineages

1 Introduction

During development and regeneration of biological tissues, stem cells play a crucial role
in controlling growth, morphology, and tissue size. Stem cells proliferate to maintain their
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population while they differentiate to give rise to other types of cells for specification of
their fates, leading to tissues of different biological functions and properties. The stem cell
population and tissue growth are intimately connected, and stem cell behavior is governed
by many intrinsic and extrinsic factors, often through regulation of the self-renewal and
the cell cycle length of stem cells [33]. Such regulatory factors include intracellular sig-
naling, diffusive molecules secreted by cells [15], cell-to-cell interactions [4], mechanical
forces, and contact-mediated intercellular signaling of morphogens [15]. As a result, the
stem cell niche, the microenvironment in which stem cells reside in a tissue, has been iden-
tified as a key factor for the sustenance of stem cells and regenerative tissues as a whole
[19,37,43].

To model spatial and temporal dynamics of stem cells and tissue growth, the discrete cell
approach, such as cellular automata [57] or subcellular element methods [44], may be used
directly to track each individual cell in the tissue for its growth and spatial dynamics. Such
techniques are computationally convenient and useful when the number of cells is small or
when the individuality of stem cells and their discrete nature are important in modeling cell
lineages and growth [12,49]. For tissues of large numbers of cells, continuum models, in
which cell densities are functions of space and time, are governed by conservation laws,
such as those for the spreading and invasion of solid tumors [2,13,24,25], may be more
appropriate. This avenue provides a robust framework that allows for direct incorporation
of many important biochemical regulations and physical and mechanical components often
observed in stem cell niches and tissue growth.

Recently, a one-dimensional continuum model has been developed to study the spatial
aspects of cell lineages and the formation and sustenance of the stem cell niche in the
olfactory epithelium (OE) [11]. Using morphogens to provide feedback on the fates of stem
cells together with a permeable basal lamina, the model achieves a stratification of cell layers
as the tissue grows to a homeostatic state during development. In this model, the geometry
of the tissue is simplified to one spatial dimension along the basal-apical axis with one end
of the tissue at the basal lamina assumed to be fixed while the other end is dynamic due to
proliferation and differentiation of stem cells and other cell types in the tissue. While the
model is focused on the stratification of different types of cells in the vertical direction, it
neglects influences from neighboring cells in the horizontal direction parallel to the basal
lamina that have been observed experimentally to exhibit strong spatial inhomogeneity in
many types of epithelia [20,22,35].

Continuum tissue modeling in high dimensions, as opposed to one dimension, presents
significant computational challenges. Often some form of a mechanical closure is required
to solve for the tissue growth velocity. Because tissue growth involves interfacial motion of
boundaries of the tissue domain, the two-dimensional models also require special com-
putational techniques for the treatment of such moving boundaries. Level set methods
[47,53], phase field methods [9,61], and immersed interface methods [31,39] are robust
approaches, particularly suitable for dealing with topological changes of the dynamic inter-
faces. Interface tracking methods, such as the boundary integral approach [38] and front-
tracking methods [21,40,56], are efficient and accurate in capturing fine structures of the
interfaces.

For tissue growth driven by a stem cell niche, several crucial aspects must be taken into
consideration when choosing numerical methods for interfacial motion. Often, intertissue
signaling of diffusive regulatory molecules occurs across tissue boundaries [11], indicat-
ing that methods capturing the boundary in a non-diffuse fashion may be most appropri-
ate. The presence of cell-to-cell adhesion [24] may intricate details of the tissue boundary
and require accurate tracking of its movement. To capture long-term distortions of tissue
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morphology, preservation of the interface over long time scales may be necessary. Also,
accounting for topological changes of the tissue domain may not be of particular importance
as budding, pinching, and fusion of domains rarely occur with developing and regenerative
tissues.

Here, we introduce numerical methods for stem cells, cell lineages and tissue growth in
two spatial dimensions through a continuum modeling framework. We develop an interface-
tracking method based on a transformation technique recently developed for studing viscous
effects of Stokes waves using the incompressible Navier–Stokes equations in two spatial
dimensions [58]. In this approach, a single interfacial boundary between two fluids is dealt
with by transforming the deformed geometry and governing equations to the unit square. The
resultant incompressibility equation with variable coefficients are then solved by an iterative
procedure that enables usage of the pseudospectral method in the horizontal direction in
which periodicity is assumed. This method, which explicitly tracks the interface, can easily
incorporate transformations that allow clustering of points in localized spatial regions for
better accuracy and efficiency.

Our models for growing tissues of different cell types consist of convection equations
for cell movement and proliferation, equations for tissue incompressibility and Darcy’s law,
and reaction–convection–diffusion equations for diffusive molecules secreted by cells. At the
center of our numerical approach is a high-order finite difference approximation for solving
the tissue incompressibility equation along with a multigrid solver. To handle more complex
growth features, we extend the one dynamic boundary transformation-based approach to
domains with two dynamic boundaries. We also re-formulate the model in polar coordinates
to handle closed geometries and introduce a corresponding transformation to the unit circle
for the usage of multigrid methods in polar coordinates. The convection terms are treated
with the second-order upwind schemes and the temporal discretization is approximated by
second order TVD Runge–Kutta methods [23].

Numerical tests of various cases demonstrate that our computational framework is second-
order accurate in both time and space with one or two dynamic boundaries in rectangular
coordinates and in polar coordinates. We also demonstrate through examples that the com-
bination of high-order finite difference spatial discretizations in conjunction with multigrid
solvers provide a robust method for the movement of tissue interfaces after transforma-
tion. In particular, it is shown that this approach is more efficient and robust in capturing
significantly deformed interfaces than the pseudospectral approach with a direct iterative
solver [58].

To apply our methods to biological tissues, we use the stem cell niche in stratified epithe-
lia, an open geometry system, and the Drosophila imaginal wing disc, a closed geom-
etry system, as models. We first extend the one-dimensional OE model [11] to general
stratified epithelia with two different types of stem cell niches in two dimensions (this
model will be further studied in [48]). The imaginal wing disc serves as an application
for our methods in polar coordinates to study the scaling of morphogen gradients during
growth.

The remainder of this paper is organized as follows. In Sect. 2, we construct methods to
solve equations governing tissue growth on a moving domain with one and two dynamic
boundaries in rectangular coordinates; in Sect. 3, we develop such methods for polar coordi-
nates; in Sect. 4, we provide computational results to test our methods and compare them to
an iterative pseudospectral approach; in Sect. 5, we apply our methods to the stem cell niche
in stratified epithelia and to the Drosophila imaginal wing disc; and in Sect. 6, we conclude
the paper.
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2 Numerical Methods in Rectangular Coordinates

2.1 One Dynamic Boundary

Consider the two-dimensional domain � = (0, 1) × (0, h) as a spatial representation of a
biological tissue. We allow h = h(x, t) and y = 0 to represent a dynamic free-top boundary
and fixed bottom of the tissue, respectively. These two boundaries may be considered to
be either the interface between neighboring tissues that may provide external input into the
system or an open external environment. We will assume periodicity in the x-direction in �
throughout, essentially modeling just one segment of a wide, encapsulating tissue. We also
take V = uî + w ĵ to be the velocity of the tissue.

Suppose that the tissue is composed of M̄ different types of cells. Assuming that the
diffusion of cells is negligible, the equations that govern the densities of each cell type, Ci

for i = 1, . . . , M̄ , are,

∂Ci

∂t
+ ∇ · (Ci V) = ψi , (1)

where ψi = ψi (x, y, t) is the net rate of production (or removal) of the i th cell type. Fur-
ther assuming a uniform density of cells within the tissue, or that the tissue behaves as an
incompressible fluid, we have C1 + C2 + · · · + CM̄ = 1, and, therefore,

∇ · V = � :=
M̄∑

i=1

ψi . (2)

To solve for V, we introduce a new variable P representing pressure. If we assume that the
tissue behaves similar to a porous medium, then we may relate pressure and velocity by
Darcy’s law [6,60],

V = −K∇ P, (3)

which generally states that tissue flow occurs down the pressure gradients. Combining Eqs.
(2) and (3) yields

− K�P = �. (4)

To maintain y = 0 as a fixed, immobile boundary, we require the vertical velocity component
to be zero there,

w(x, y = 0, t) ≡ ∂P

∂y
(x, y = 0, t) = 0. (5)

Along the boundary at the top of the tissue, h, we assume there exists a surface tension that
may result from intercellular forces and cell surface mechanics [17,36]. Thus, we take the
pressure to be directly proportional to the curvature of the boundary, κ , [25],

P(x, h, t) = ξκ = ξ
∂2h/∂x2

[
1 + (∂h/∂x)2

]3/2 . (6)

The size of the proportionality constant ξ corresponds to the magnitude of the surface tension
that exists along h, which may vary depending on the number and strength of adherens and gap
junctions between cells. The growth of the dynamic boundary of the system, h, is governed
by the kinematic condition,
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∂h

∂t
+ u(x, h, t)

∂h

∂x
= w(x, h, t), (7)

which requires the normal component of the tissue velocity at the boundary to be equal to
the velocity of the tissue boundary itself.

2.1.1 Transformation to the Unit Square

To handle the governing partial differential equations, we first transform the domain� to the
unit square and then track the movement of the dynamic boundary h explicitly. Following
[58], we apply the following coordinate system,

x = X, (8)

y = F(X, Y, τ ), (9)

t = τ. (10)

where F(X, 1, τ ) = h(x, t) and F(X, 0, τ ) = 0. The transformation function F can be
chosen to naturally accumulate grid points near the dynamic interface where morphogen
gradients are sharp. The transformed derivatives are written as follows:

∂

∂t
= ∂

∂τ
− g1

∂

∂Y
, (11)

∂

∂x
= ∂

∂X
− g2

∂

∂Y
, (12)

∂

∂y
= g3

∂

∂Y
, (13)

∂2

∂x2 = ∂2

∂X2 + (g2)
2 ∂

2

∂Y 2 − 2g2
∂2

∂X∂Y
+

[
g2
∂g2

∂Y
− ∂g2

∂X

]
∂

∂Y
, (14)

∂2

∂y2 = (g3)
2 ∂

2

∂Y 2 + g3
∂g3

∂Y

∂

∂Y
, (15)

where

g1 = Fτ
FY
, g2 = FX

FY
, g3 = 1

FY
. (16)

Furthermore, we can write the Laplacian operator as

� = ∂2

∂x2 + ∂2

∂y2 = ∂2

∂X2 + g4
∂2

∂Y 2 + g5
∂2

∂X∂Y
+ g6

∂

∂Y
. (17)

where

g4 = (g2)
2 + (g3)

2, g5 = −2g2, g6 = g2
∂g2

∂Y
+ g3

∂g3

∂Y
− ∂g2

∂X
. (18)

2.1.2 Scaling the Tissue Growth System

For simplicity, we first scale the P by −K ,

P̃ = −K P. (19)

Applying the transformation to Eqs. (3–4) yields

u = P̃X − g2 P̃Y , w = g3 P̃Y , (20)
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P̃X X + g4 P̃Y Y + g5 P̃XY + g6 P̃Y = �. (21)

The boundary conditions in Eqs. (5–6) reduce to

P̃Y

∣∣∣
Y=0

= 0, (22)

P̃
∣∣∣
Y=1

= ξ̃
h X X

(
1 + (h X )2

)3/2 , (23)

where ξ̃ = −K ξ . The description of the movement of the boundary h in Eq. (7) is essentially
invariant under the transformation,

hτ + u(X, 1, τ )h X = w(X, 1, τ ). (24)

2.2 Two Dynamic Boundaries

Let us also consider the case in which the tissue does not have a rigid boundary at y = 0,
which is instead replaced by a second dynamic boundary. In this case, we may begin with the
domain �̃ = (0, 1)× (h2, h1) to represent a biological tissue where both h1 = h1(x, t) and
h2 = h2(x, t) are dynamic boundaries. If we keep to our previous assumptions of M̄ cells
comprising the tissue with a uniform density and impose Darcy’s law, then the governing
equations are still given by Eqs. (1–4). Continuing to assume that surface tension is is present
along the dynamic boundaries of the domain, we have the following boundary conditions,

P(x, h1, t) = ξκ1, (25)

P(x, h2, t) = −ξκ2, (26)

where κ1 and κ2 are the respective curvatures of h1 and h2. Also, the kinematic boundary
conditions are given by,

∂h1

∂t
+ u(x, h1, t)

∂h1

∂x
= w(x, h1, t), (27)

∂h2

∂t
+ u(x, h2, t)

∂h2

∂x
= w(x, h2, t). (28)

Transforming the system on �̃ to a rectangular domain occurs in a similar fashion as described
in Sect. 2.1.2 by choosing F(X, 1, τ ) = h1(x, t) and F(X, 0, τ ) = h2(x, t).

2.3 Spatial and Temporal Discretizations and Multigrid Solvers

Now that the governing equations on� and �̃ have been transformed to a rectangular domain,
we then present methods to solve the transformed system in Eqs. (20–24) for the case with
one dynamic boundary and for the case with two boundaries presented in Sect. 2.2.

Both the curvature κ and g6 are functions of h X X in the transformed domain regardless of
the particular choice of F in Eq. (9), since ∂(FX/FY )/∂X takes two spatial derivatives of h.
As a result, P̃ depends on h X X while the partial derivatives of P̃ govern the movement of h as
evident in Eq. (7). Naturally, it follows that the movement of h is implicitly dependent upon
its own third derivative, h X X X , and solving the transformed system of equations requires a
high-order accuracy of the spatial discretization in the X -direction to maintain overall second-
order accuracy in at least computing h X X . Initial numerical tests in which the system was
discretized in space using second-order central difference approximations and then evolved
in time were observed to be unstable and inaccurate.
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One approach is to use pseudospectral method in the X -direction similar to methods for
the transformed inviscid Navier–Stokes equations in conjunction with an iterative method
[58]. In Appendix 7, we outline an algorithm for such an approach to solve Eqs. (20–24) for a
single dynamic boundary. However, an iterative algorithm incorporating the pseudospectral
method has not yet been applied to domains with two dynamic boundaries. We also note
that the required numerical accuracy for these equations are not as high as those for the
inviscid Navier–Stokes equations. In Sect. 4, we will present the performance of such an
implementation.

Here, we use fourth-order central difference approximations for the derivatives of h and
the partial derivatives of P̃ in the X -direction, namely,

∂ f

∂X
≈ − fi+2 + 8 fi+1 − 8 fi−1 + fi−2

12�X
, (29)

∂2 f

∂X2 ≈ − fi+2 + 16 fi+1 − 30 fi + 16 fi−1 − fi−2

12�X2 . (30)

Because of the assumed periodic boundary conditions in the X direction of � and �̃ in the
system, the five-point stencil in the X -direction near the boundary can be implemented in
a straightforward fashion. For the discretization of the partial derivatives in the Y -direction,
we use second-order central difference approximations.

To solve the linear system that results from the spatial discretization of Poisson’s equa-
tion in Eq. (21), we implement a Gauss–Seidel iterative scheme with a multigrid solver,
though other schemes, such as Newton relaxation, may be used. Our transformed Lapla-
cian operator described in Eq. (17) stands very different from the usual Laplacian operator
on the unit square due to first-order and mixed partial derivatives that are present, and,
more importantly, variable coefficients for three of the terms. This notion draws similarities
between our transformed Laplacian operator and the anisotropic diffusion operator. Several
multigrid algorithms have been constructed to robustly and efficiently handle the anisotropic
diffusion operator and general cases with variable coefficients [1,16,42,46,51], which may
be applied here. However, for simplicity, we implement a multigrid algorithm that is often
applied to solve elliptic problems with constant coefficients discussed in [8] with a 9-point
full-weighting for the restriction operator. As a result of the variable coefficients, the number
of Gauss–Seidel relaxations we would need to implement on each level to solve the linear
system exactly is dependent upon the size of the original grid, which stands in contrast to the
case with constant coefficients. In all of our numerical simulations, we use 80 Gauss–Seidel
relaxations on each level to ensure the multigrid algorithm solves the resultant linear system
accurately, though this many relaxations on each grid is often unnecessary.

To explicity track the movement of the boundary h governed by the kinematic equation
in Eq. (24), or for h1 and h2 in the case of two dynamic boundaries, a second-order upwind
approximation is used to discretize in space

h X ≈

⎧
⎪⎨

⎪⎩

3hi − 4hi−1 + hi−2
2�X , if u(X, 1, τ ) > 0

−3hi+2 + 4hi+1 − 3hi
2�X , if u(X, 1, τ ) < 0

(31)

For time evolution, a second-order TVD Runge–Kutta is employed [23],

U (1) = U n +�τ f (U n), (32)

U n+1 = 1

2
U n + 1

2
U (1) + 1

2
�τ f

(
U (1)

)
, (33)
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with corresponding multigrid solvers used during each corresponding function evaluation,
f . As a result, the overall spatiotemporal order of accuracy of this computational approach
is second-order.

3 Numerical Methods in Polar Coordinates

In this section, we translate the moving boundary system in rectangular coordinates described
in Sect. 2 to a formulation in polar coordinates. We begin with a two-dimensional polar domain

 = (0, 2π)×(0, H) to represent our tissue where H = H(θ, t) is a dynamic free-boundary.
We take V = wr̂ + uθ̂ to be the tissue velocity. If we assume that M̄ cell types compose the
tissue as an incompressible fluid that obeys Darcy’s law, then we again have the governing
equations,

V = −K∇ P = −K

(
∂P

∂r
r̂ + 1

r

∂P

∂θ
θ̂

)
, (34)

−K�P = −K

(
∂2 P

∂r2 + 1

r

∂P

∂r
+ 1

r2

∂2 P

∂θ2

)
= �, (35)

P(r = H, θ, t) = ξκ = ξ
H2 + 2H2

θ − H Hθθ
(
H2 + H2

θ

)3/2 (36)

where variables are defined similarly as in our rectangular formulation. The kinematic equa-
tion describing the dynamics of H is

∂H

∂t
+ u(H, θ, t)

H

∂H

∂θ
= w(H, θ, t). (37)

3.1 Transformation to the Unit Circle

We transform the system in Eqs. (34–37) from 
 to the unit circle similar to the manner in
which � is scaled to the unit square:

r = F(R,, τ), (38)

θ = , (39)

t = τ. (40)

where F(1,, τ) = H(, t) and F(0,, τ) = 0. The transformed derivatives are written
as follows:

∂

∂t
= ∂

∂τ
− G1

∂

∂R
, (41)

∂

∂θ
= ∂

∂
− G2

∂

∂R
, (42)

∂

∂r
= G3

∂

∂R
, (43)

∂2

∂θ2 = ∂2

∂2 + (G2)
2 ∂2

∂R2 − 2G2
∂2

∂∂R
+

[
G2
∂G2

∂R
− ∂G2

∂

]
∂

∂R
, (44)

∂2

∂r2 = (G3)
2 ∂2

∂R2 + G3
∂G3

∂R

∂

∂R
, (45)
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with

G1 = Fτ
FR
, G2 = F

FR
, G3 = 1

FR
. (46)

The transformed Laplacian takes the form,

� = 1

F2

∂2

∂2 + G4
∂2

∂R2 + G5
∂2

∂∂R
+ G6

∂

∂R
. (47)

where

G4 = 1

F2 (G2)
2 + (G3)

2, G5 = − 2

F2 G2, (48)

G6 = 1

F2

(
G2
∂G2

∂R
− ∂G2

∂

)
+ G3

(
1

F
+ ∂G3

∂R

)
. (49)

3.2 Scaling the Tissue Growth System in Polar Coordinates

For the governing equations, we first scale P by −K ,

P̃ = −K P. (50)

Applying the transformation to Eqs. (34–35) yields

u = 1

F

(
P̃ − G2 P̃R

)
, w = G3 P̃R, (51)

1

F2 P̃ + G4 P̃R R + G5 P̃R + G6 P̃R = �. (52)

The boundary condition in Eq. (36) reduces to

P̃
∣∣∣

R=1
= ξ̃

H2 + 2H2
 − H H

(
H2 + H2



)3/2 (53)

where ξ̃ = −K ξ . The kinematic condition in Eq. (37) scales as

Hτ + u(1,, t)
H
H

= w(1,, t). (54)

3.3 Spatial and Temporal Discretization and Multigrid Solvers in Polar Coordinates

In polar coordinates, the overall computational approach stands very similar to the multigrid
approach for rectangular coordinates developed in Sect. 2. A fourth-order central difference
approximation is used to discretize in the-direction due to the dependence of G6 and κ on
H while second-order finite difference approximations are used in the R-direction. The
resultant linear system is then solved by a Gauss–Seidel iterative scheme with a multigrid
solver. For interpolation on the discretized unit circle, we use inverse distance weighting that
depends on R. More specifically, our interpolation operator from U �−→ U∗ takes the form,

W1, j
(
Ui, j + Ui+2, j

) +
(

1

2
− W1, j

) (
Ui, j+2 + Ui+2, j+2

) �−→ U∗
i+1, j , (55)

W2, j
(
Ui, j + Ui+2, j

) +
(

1

2
− W2, j

) (
Ui, j+2 + Ui+2, j+2

) �−→ U∗
i+1, j+1, (56)
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1

2

(
Ui, j + Ui, j+2

) �−→ U∗
i, j+1, (57)

W1, j = β j

2(α j + β j )
, W2, j = ε j

2(δ j + ε j )
, (58)

α j = dist((R j ,i ), (R j ,i+1)) = R j

√
2(1 + cos�), (59)

β j = dist((R j ,i ), (R j+2,i+1)) =
√

R2
j + R2

j+2 − 2R j R j+2 cos�, (60)

δ j = dist((R j ,i ), (R j+1,i+1)) =
√

R2
j + R2

j+1 − 2R j R j+1 cos�, (61)

ε j =dist((R j+2,i ), (R j+1,i+1))=
√

R2
j+1+R2

j+2−2R j+1 R j+2 cos�. (62)

The restriction operator used is just the transpose of the interpolation operator scaled by the
normalization constant 1/[4 + 2(W1, j + W2, j+1 − W1, j−1 − W2, j−1)], which results in an
11-point full-weighting. Due to variable coefficients in the transformed Laplacian operator
in polar coordinates, we again use 80 Gauss–Seidel relaxations on each grid for the general
multigrid algorithm, though multigrid methods specialized for polar coordinates [5,28,32]
may be applied here.

The behavior of the system at the singularity at the origin depends on the choice of F
that defines our transformation for the polar coordinate system. Choosing a linear scaling of
F(R,, τ) = H(, τ)R results in all the coefficients of the transformed Laplacian being
directly proportional to inverse powers of R,

1

F2 = 1

H2 R2 , G4 = H
H4 + 1

H2 , G5 =−2
H
H3

1

R
, G6 =

[
2

H2


H4 − H
H3 + 1

H2

]
1

R
.

(63)

This form, then, allows for a simple treatment of the Laplacian operator at the origin,

�U
∣∣∣

R=0
= 2

N

N∑

i=1

(G4 + G6)

∣∣∣
i ,R=1

(Ui,2 − U1)

�R2 . (64)

where N + 1 is the spatial discretization size in the -direction.
For movement of the dynamic boundary in polar coordinates and temporal discretiza-

tion, upwind discretizations and Runge–Kutta methods are used as described for rectangular
coordinates.

4 Numerical Tests

In this section, we demonstrate that the order of accuracy of our method for interfacial
motion using a transformation achieves an overall second-order spatiotemporal accuracy.
We also compare the performance of implementing a multigrid solver with a fourth-order
central difference approximation in the X -direction with the iterative pseudospectral approach
outlined in Appendix 7.

To compare these two methods, we implement both of them to solve an exact static problem
for the pressure, P , without time evolution given by Eqs. (4–6). The variable boundary along
the top of the tissue is described by h(x) = 1 + B cos(2πx) with B varying in size for the
numerical tests. We take a simple linear form of F in Eq. (9) for our transformation in this
testing case, implying grid points are evenly distributed in the Y -direction. For B = 0.1, we
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Table 1 Errors, orders of accuracy, and CPU times for calculation of the internal tissue pressure for the case
with one variable boundary given by Eqs. (4–6) without time evolution using the iterative pseudospectral
approach in Appendix 7

N B = 0.1 B = 0.15 B = 0.25

Error Order Iter. CPU(s) Error Order Iter. CPU(s) Error CPU(s)

8 0.466 – 16 5.40e−2 2.17 – 34 9.90e−2 NC –

16 0.100 2.22 19 0.182 0.226 3.27 64 0.226 NC –

32 2.55e−2 1.98 21 0.624 NC – – – NC –

64 6.42e-3 1.99 21 2.19 NC – – – NC –

128 1.61e−3 2.00 18 6.93 NC – – – NC –

256 4.02e−4 2.00 15 20.4 NC – – – NC –

512 1.00e−4 2.00 12 63.9 NC – – – NC –

The boundary h is described by the curve h(x) = 1 + B cos(2πx). An exact testing case is constructed with
P = κ cos(2πY ) = κ cos(2πy/h) and a corresponding � where κ is the curvature of h. A linear scaling
F(X, Y, τ ) = h(X, τ )Y is used for the transformation in Eqs. (8–10) along with a tolerance of ε = 10−8 for
the iterative method. Parameters chosen are K = ξ = 1
NC no convergence of the iterative method

Table 2 Errors, orders of accuracy, and CPU times for calculation of the internal tissue pressure for the case
with one variable boundary given by Eqs. (4–6) without time evolution using fourth-order central difference
approximations along with a multigrid solver

N B = 0.1 B = 0.25 B = 0.5

Error Order CPU(s) Error Order CPU(s) Error Order CPU(s)

8 0.512 – 1.30e−2 29.0 – 1.50e−2 412.8 – 1.20e−2

16 6.23e−2 3.04 1.70e−2 1.99 3.87 1.70e−2 128.2 1.69 1.50e−2

32 1.22e−2 2.35 6.60e−2 7.54e−2 4.72 6.50e−2 5.86 4.45 6.40e−2

64 2.78e−3 2.14 0.256 9.65e−3 2.97 0.256 0.168 5.61 0.242

128 6.69e−4 2.06 1.12 1.69e−3 2.51 1.15 8.97e−3 3.75 1.12

256 1.64e−4 2.02 5.92 4.19e−4 2.01 5.84 1.04e−3 3.11 5.99

512 4.08e−5 2.01 29.5 1.05e−4 2.00 30.6 2.74e−4 1.92 30.2

The variable boundary h, choice of transformation, and parameters chosen are the same as those given in
Table 1

see that the iterative pseudospectral approach achieves a second-order accuracy with respect
to the maximum-norm and with approximately 10–20 iterations required for convergence as
evident in Table 1. However, Table 1 also shows that when the value of B is increased to 0.15,
many more iterations are required for convergence on grids of size NX = 8 and 16, while
the method fails to converge on the larger grids tested. The iterative pseudospectral approach
fails to converge in our numerical simulations on any of the grid sizes tested when B = 0.25.
We speculate that this is due to the increased magnitude and variability of the coefficients of
the transformed Laplacian operator in Eq. (17).

Table 2 demonstrates that a multigrid solver with a fourth-order central difference approx-
imation in the X -direction also approximates P with a second-order spatial accuracy in the
case when B = 0.1. Comparing the corresponding CPU times along with those for the itera-
tive pseudospectral simulations reveals that, even with 80 Gauss–Seidel relaxations on each
grid, the multigrid approach is the less expensive of the two algorithms. Namely, the multigrid
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Table 3 Errors, orders of accuracy, and CPU times for calculation of the internal tissue pressure and boundary
movement for the case with one dynamic boundary given by Eqs. (4–6) up to time t = 6.25 × 10−2

N P h CPU(s)

Error Order Error Order

8 – – – – 3.60e−2

16 4.28e−2 – 8.44e−3 – 0.504

32 1.022e−2 2.07 2.41e−3 1.81 8.13

64 2.54e−3 2.01 5.35e−4 2.17 136.0

128 6.27e−4 2.02 1.23e−4 2.12 2,372.3

256 1.55e−4 2.02 2.97e−5 2.05 46,870.3

The initial state of dynamic boundary h is described by the curve h(x, 0) = 1 + 0.25 cos(2πx), and a uniform
influx of cells is assumed by � = 1. An exponential scaling F(X, Y, τ ) = h(X, τ )(1 − e−σY )/(1 − e−σ )
is used for the transformation in Eqs. (8–10) with σ = 2.5. �τ = �X2 is taken for time discretization.
Parameters chosen are K = 1 and ξ = 10−5

tests achieve a twofold increase in CPU time for the largest grid tested with N = 512. As
B increases to 0.25 and 0.5 in our tests, Table 2 displays convergence and a second-order
accuracy for the multigrid approach with no increase in CPU time due to the fixed number of
Gauss–Seidel relaxations. This notion stands as a drastic improvement over the pseudospec-
tral tests in which the iterative solver often failed to converge when h was further distorted with
B values exceeding 0.1. We note that some accuracies computed for this approach achieve
orders of accuracies exceeding two with a highly deformed interface, and we speculate that
this occurs due to a dominance of the error in the spatial direction in which fourth-order
central difference approximations are made.

From here, we proceed to test the accuracy of the overall spatial and temporal discretiza-
tions. Table 3 shows an overall second-order spatiotemporal accuracy for the coupled system
of both P and h using maximum-norm difference between successive approximations to
compute the error and, as a result, to compute the order of accuracy. Since h moves dynam-
ically in this testing case, an exponential scaling of F in Eq. (9) is used for a higher spatial
resolution in the Y -direction near h. The transformed grid with N = 32 is plotted on the
initial state of� in Fig. 1a. We also demonstrate a proper temporal treatment of the kinematic
boundary condition in Eq. (24) in Table 4 using an exact dynamic problem in which h is
spatially uniform.

We next test the accuracy of our approach for the problem formulated with two dynamic
boundaries in Sect. 2.2. Table 5 shows that approximations for P and h achieve a second-order
accuracy in a numerical testing case evolved in time using the maximum-norm difference
between successive approximations to compute the error. For this test using two variable
boundaries, an arctangent scaling of F is used to place more grid points in the Y -direction
near both h1 and h2. The transformed grid is plotted on the initial state of �̃ for the dynamic
problem in Fig. 1b.

To test the accuracy of our approach with a fourth-order central difference approximation
in the -direction in polar coordinates, we choose a dynamic time-dependent problem with
no exact solution and a constant form of �. A second-order accuracy in time and space
is achieved using differences between successive approximations to compute the error as
Table 6 demonstrates. As previously discussed, a linear form of F in Eq. (38) is chosen for
ease in handling the singularity at the origin.
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Fig. 1 F plotted on computational grids for numerical tests in rectangular coordinates with N = 32 shown
on the domains � and �̃. a An exponential scaling F(X, Y, τ ) = h(X, τ )(1 − e−σY )/(1 − e−σ ) for the
transformation in Eqs. (8–10) with σ = 2.5 and h(x) = 1+0.25 cos(2πx) as implemented for calculations in
Table 3 and Fig. 3. b An arctangent scaling F(X, Y, τ ) = (h1(X, τ )−h2(X, τ ))(arctan[(2Y −1) tan(ω)]/ω+
1)/2 + h2(X, τ ) for the transformation in Eqs. (8–10) with ω = 1.25 and h1(x) = 1 + 0.2 cos(2πx) and
h2(x) = 0.2 sin(4πx) as implemented for calculations in Table 5

Table 4 Errors, orders of accuracy, and CPU times for calculation testing the implementation of the kinematic
boundary condition for the case with one dynamic boundary given by Eqs. (4–6) up to time t = 6.25 × 10−2

�τ P h CPU(s)

Error Order Error Order

2.0e−2 1.71e−2 – 1.89e−4 – 4.69

1.0e−2 4.46e−3 1.94 4.91e−5 1.94 9.28

5.0e−3 1.14e−3 1.97 1.26e−5 1.96 18.7

2.5e−3 2.87e−4 1.99 3.16e−6 2.00 37.7

1.25e−3 7.20e−5 2.00 8.33e−7 1.92 75.1

The initial state of the dynamic boundary h is described by h(x, 0) = 1, and a uniform influx of cells is assumed
by � = 2. The exact solutions are given by P = 2(y2 − h2) and h = e4t . A linear scaling F(X, Y, τ ) =
h(X, τ )Y is used for the transformation in Eqs. (8–10). N = 128 is taken for spatial discretization. Parameters
chosen are K = 1 and ξ = 10−5

5 Applications

In this section, we apply our numerical methods for tissue growth to two model systems
in developmental biology: stratified epithelia and the Drosophila imaginal wing disc. The
application to developing stratified epithelia focuses on the spatial aspects of cell lineages
and stem cell niche formation via gradients of signaling molecules in open geometries using
the two-dimensional rectangular coordinate system approach presented in Sect. 2. For tissue
growth in the closed geometry of the imaginal wing disc, we test our methods in polar
coordinates for an expansion–repression mechanism on a growing domain and its effects on
the scaling of morphogen gradients. For both systems, proliferation and its interplay with
biochemical signaling processes play critical roles in tissue growth.
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Table 5 Errors, orders of accuracy, and CPU times for calculation of the internal tissue pressure and boundary
movement for the case with two dynamic boundary given by Eqs. (4, 25–28) up to time t = 6.25 × 10−2

N P h1 h2 CPU(s)

Error Order Error Order Error Order

8 – – – – – – 3.10e−2

16 9.42e−3 – 7.53e−3 – 2.04e−2 – 0.427

32 3.71e−3 1.34 9.47e−4 2.99 6.65e−3 1.61 7.83

64 1.11e−3 1.74 1.44e−4 2.72 2.40e−3 1.47 123.6

128 2.75e−4 2.02 3.10e−5 2.21 5.67e−4 2.08 2,344.7

256 6.96e−5 1.98 8.55e−6 1.86 1.46e−4 1.95 47,573.1

The initial states of the dynamic boundaries h1 and h2 are described by the curves h1(x, 0) = 1+0.2 cos(2πx)
and h2(x, 0) = 0.2 sin(4πx), and a uniform influx of cells is assumed by � = 1. An arctangent scaling
F(X, Y, τ ) = (h1(X, τ )− h2(X, τ ))(arctan[(2Y − 1) tan(ω)]/ω+ 1)/2 + h2(X, τ ) is used for the transfor-
mation in Eqs. (8–10) with ω = 1.25. �τ = �X2 is taken for time discretization. Parameters chosen are
K = 1 and ξ = 10−5

Table 6 Errors, orders of accuracy, and CPU times for calculation of the internal tissue pressure and boundary
movement in polar coordinates given by Eqs. (4–6) up to time t = 6.25 × 10−2

N P H CPU(s)

Error Order Error Order

16 – – – – 0.152

32 2.47e−3 – 5.90e−3 – 2.70

64 3.97e−4 2.63 1.50e−3 1.98 45.5

128 9.38e−5 2.08 3.85e−4 1.96 895.9

256 1.96e−5 2.26 8.97e−5 2.10 26,032.1

The initial state of dynamic boundary H is described by the curve H(θ, 0) = 1 + 0.2 cos(3θ), and a uniform
influx of cells is assumed by� = 1. A linear scaling F(R,, τ) = H(, τ)R is used for the transformation
in Eqs. (38–40). �τ = �2 is taken for time discretization. Parameters chosen are K = 1 and ξ = 10−5

5.1 A Spatial Cell Lineage Model in Two-Dimensions

Stratified epithelia are great model systems to study the development, sustenance, and regen-
eration of tissues through a cell lineage, in which the progeny of cells progress from stem
to terminal differential stages. Many types of epithelia that are several cells thick stratify
into different cell layers and maintain a population of stem cells along the basal lamina of
the tissue. Examples of such tissues are evident in the epidermis [30], OE [54], and cere-
bral cortex [18]. In these tissues, the stem cell niche plays the crucial role of controlling
the populations of cell types that stratify in layers during developmental, homeostatic, and
regenerative conditions [50]. Though the patterning of cell layers occurs primarily along the
apical-basal direction, spatially varying two- and three-dimensional tissue morphologies have
been observed in stratified epithelia [20,22,35]. Here, we will extend the one-dimensional
mathematical model for the stratification of cell layers and the formation of a stem cell niche
in the OE [11] to a model for stratified epithelia in two-dimensions [48].

Assume that the epithelium is represented by the domain �, and it is comprised by three
different cell types: stem cells, transit amplifying (TA) cells, and terminally differentiated
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(TD) cells. Representing the densities of each of the cell types by C0, C1, and C1, respectively,
the governing equations are

∂C0

∂t
+ ∇ · (C0V) = (2p0 − 1)ν0C0, (65)

∂C1

∂t
+ ∇ · (C1V) = 2(1 − p0)ν0C0 + (2p1 − 1)ν1C1, (66)

∂C2

∂t
+ ∇ · (C2V) = 2(1 − p1)ν1C1 − d2C2, (67)

where pi is the replication probability of the i th cell type and νi is ln 2 over its cell cycle
length for i = 0, 1. The natural death rate of TD cells is represented by d2. It then follows
that the net influx of cells into the tissue is given by

� = ν0C0 + ν1C1 − d2C2. (68)

We also assume no-flux boundary conditions for each of the cell densities along the top and
bottom of the tissue. To induce stratification of the tissue into layers, we allow morphogens
that are produced by cells in the epithelium to be rapidly uptaken into the underlying base-
ment membrane to form spatial gradients and influence the probabilities p0 and p1. If we
assume that the diffusive molecules A and G are produced by Ci cells at a rate of μi and ηi ,
respectively, then both morphogens are described by

∂A

∂t
+ ∇ · (AV) = DA�A +

2∑

j=0

μ j C j − adeg A, (69)

∂G

∂t
+ ∇ · (GV) = DG�G +

2∑

j=0

η j C j − gdegG. (70)

Here, DA and DG are diffusion coefficients and adeg and gdeg are degradation rates for each
of the molecules. To interpret the rapid uptake of each of the molecules, we employ a leaky
boundary condition for each along the basal lamina and a no-flux boundary at the closed
apical surface. If we take the bottom of the tissue, y = 0, to be the basal lamina and the top
as the apical tissue surface, then the boundary conditions become

∂A

∂y

∣∣∣
y=0

= αA A,
∂G

∂y

∣∣∣
y=0

= αG G, (71)

∇ A · n̂
∣∣∣
y=h

= 0, ∇G · n̂
∣∣∣
y=h

= 0, (72)

where n̂ denotes the unit outward vector normal to h and αA and αG represent the coefficients
of permeability of each of the respective morphogens as they diffuse through the basal lamina.
The stem cell niche that develops in this case is referred to as the rigid stem cell niche since
it prompts niche formation along the rigid boundary y = 0. If the top of the tissue, y = h, is
taken as the basal lamina and the bottom as the apical surface, then our boundary conditions
take the form,

∂A

∂y

∣∣∣
y=0

= 0,
∂G

∂y

∣∣∣
y=0

= 0, (73)

∇ A · n̂
∣∣∣
y=h

= −αA A, ∇G · n̂
∣∣∣
y=h

= −αG G. (74)
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This case is referred to as the free-form stem cell niche due to niche formation along the
free-boundary.

Each of these two types of molecules can regulate the progression of cells through the
lineage by controlling their replication probabilities, through functional forms of p0 and p1

such as the following,

p0 = p̄0

1 + (γA A)m
, (75)

p1 = p̄1

1 + (γG G)n
. (76)

In this case, p0 is inhibited by A with an EC50 value, or the half-maximal effective concen-
tration, of 1/γA and may achieve a maximal value of p̄0, while G inhibits p1 with an EC50
of 1/γG and a thresholding value of p̄1. Hill exponents are represented by m and n.

Each of the unscaled cell lineage Eqs. (65–67) can be written in terms of u, w, and P
generally as

Ct + uCx + wCy + C�P = f (C), (77)

where C ≡ Ci , i = 0, 1, 2 and f represents the corresponding right-hand side of each
equation. Applying the transformation leads to

Cτ+uCX +(−g1−g2u+g3w)CY = f (C)−
(

P̃X X +g4 P̃Y Y +g5 P̃XY +g6 P̃Y

)
C. (78)

Because the growth of a tissue occurs at a significantly slower rate than that of a bio-
chemical reaction, the morphogen system in Eqs. (69–74) can be evaluated at a quasi-steady
state

0 = DA (AX X + g4 AY Y + g5 AXY + g6 AY )+
2∑

j=0

μ j C j − adeg A, (79)

0 = DG (G X X + g4GY Y + g5G XY + g6GY )+
2∑

j=0

η j C j − gdegG. (80)

When the basal lamina resides along y = 0, the transformed boundary conditions in
Eqs. (71–72) become

AY

∣∣∣
Y=0

= αA

g3
A, GY

∣∣∣
Y=0

= αG

g3
G. (81)

The Neumann boundary condition for a species U along y = h,

∇U · n̂ = φ, (82)

after the transformation takes the following form,

Uy = hxUx + φ

√
1 + h2

x , (83)

UY =
h X UX + φ

√
1 + h2

X

g2h X + g3
. (84)

which applies to both the morphogens A and G and also the cell densities Ci , i = 0, 1, 2.
To solve the convection equations describing the distributions of the cell densities in the

tissue given by Eq. (78), a second-order upwind discretization was implemented in space
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Table 7 Errors, orders of accuracy, and CPU times for calculation of epithelial growth and stratification with
a rigid stem cell niche described in Eqs. (4–7, 65–72, 75–76) up to time t = 6.25 × 10−2

N C0 P h A CPU (s)

Error Order Error Order Error Order Error Order

8 – – – – – – – – 8.90e−2

16 1.66e−2 – 2.04e−5 – 1.66e−4 – 9.18e−4 – 1.38

32 6.22e−3 1.42 7.20e−6 1.50 3.55e−5 2.22 1.67e−4 2.45 24.2

64 1.54e−3 2.02 1.97e−6 1.88 7.53e−6 2.24 3.89e−5 2.10 396.0

128 3.84e−4 2.00 4.98e−7 1.97 1.67e−6 2.17 9.56e−6 2.03 7,499.5

256 9.51e−5 2.01 1.25e−7 1.99 3.90e−7 2.10 2.74e−6 1.80 142,867.4

A linear scaling F(X, Y, τ ) = h(X, τ )Y is used for the transformation in Eqs. (8–10). �τ = �X2

is taken for time discretization. Initial conditions: h(x, 0) = 0.1[1 + 0.25 cos(2πx)], C0 = C + 1 =
0.5[sin(2πX) cos(2πY ) + 1], and C2 = 1 − C0 − C1. Chosen parameters are similar to those in [11]:
d2 = 10−2, DA = DG = 10−3, adeg = gdeg = μ0 = μ1 = μ2 = η1 = η2 = 10−1,

η0 = 0, αA = αG = 10, p̄0 = 0.7, p̄1 = 0.4, γA = 1.1, γG = 5, ν0 = ν1 = 1, K = 1, and ξ = 4×10−6.
All hill exponents are chosen to be 2

along with a temporal discretization using a second-order TVD Runge–Kutta [23]. For the
morphogen system in Eqs. (79–80), second-order central difference approximations are used
in the X - and Y -directions along with a multigrid solver for the reaction-diffusion equa-
tions. Along the dynamic boundary h, a second-order upwind approximation is used in the
Y -direction for terms with mixed partial derivatives. As is the case in solving for P , 80
Gauss–Seidel iterations are used in the multigrid algorithm to solve for A and G. The system
as a whole, with pressure and velocities solved using methods outlined in Sect. 2, maintains
approximations in space and time that are at least second-order accurate.

First, we conduct numerical tests for the coupled system with the cell densities, pressure,
dynamic boundary h, and diffusive molecules A and G by assuming a rigid stem cell niche,
a linear scaling of F in Eq. (9), and nonuniform initial states of cell distributions and tissue
morphology. Table 7 shows a spatiotemporal second-order accuracy for C0, P , h, and A in the
numerical simulations for the stratified epithelia with a rigid niche. Because an exact solution
cannot be constructed, errors are computed using the maximum-norm difference between
successive approximations. Similar tests with a free-form stem cell niche also achieved a
second-order accuracy for each of the system’s components in both time and space as evident
in Table 8. For the tests with a free-form niche, an exponential form of F is used to place
more grid points in the Y -direction in a region near both near the interface h and where sharp
gradients of A and G form.

When beginning with an initial uniform distribution of stem cells and a distorted tissue
morpohology, long-term behavior of the model with a rigid stem cell niche reaches an approx-
imate steady state displaying stratification of cell layers in the y-direction and homogeneity
in the x-direction. For the same initial conditions with a free-form stem cell niche, the tissue
morpohology becomes further distorted and unstable fingers form in the tissue with stem
cells accumulating at the tips. First, the tissue grows and h increases in magnitude to time
t = 25, and then the initial perturbation to h amplifies over time as shown in Fig. 2. Plots of
the distributions of each cell type in Figure 3 reveal that the stem cell niche and TA cell clus-
ters localize at the tip of fingers where A and G concentrations are low. Thin tissue regions
are, also, primarily dominated by TD cells, as low stem and TA cell quantities are present
there.
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Table 8 Errors, orders of accuracy, and CPU times for calculation of epithelial growth and stratification with
a rigid stem cell niche described in Eqs. (4–7, 65–70, 73–76) up to time t = 6.25 × 10−2

N C0 P h A CPU (s)

Error Order Error Order Error Order Error Order

8 – – – – – – – – 9.50e−2

16 5.34e−2 – 7.17e−4 – 8.53e−5 – 1.22e−2 – 1.40

32 1.63e−2 1.71 1.87e−4 1.94 3.71e−5 1.20 3.24e−3 1.91 25.1

64 3.88e−3 2.08 4.68e−5 2.00 9.84e−6 1.91 8.19e−4 1.98 392.4

128 9.37e−4 2.05 1.16e−5 2.01 2.45e−6 2.01 2.07e−4 1.98 6,930.0

256 3.00e-4 1.64 2.89e−6 2.01 5.91e−7 2.05 5.35e−5 1.95 141,816.8

An exponential scaling F(X, Y, τ ) = h(X, τ )(1 − e−σY )/(1 − e−σ ) is used for the transformation in Eqs.
(8–10) with σ = 2.5. �τ = �X2 is taken for time discretization. Initial conditions and parameters are given
in Table 7

Fig. 2 The dynamic interface h
at times t = 0, 25, 50, 75,
100, 125 for stratified epithelium
simulations with a free-form stem
cell niche. Initial conditions are
h(x, 0) = 1 + 0.25 cos(2πx),
C0 = 0.1, C1 = 0, and
C2 = 0.9. A discretization size of
N = 128 is used along with
�t = 2 × 10−3. Parameters used
are given in Table 7

Our method incorporating high-order central difference approximations and multigrid
solvers enables fast and robust computation of stem cell tissue models in which biological
processes occur at the molecular, cellular, and tissue level. This robust framework can also
capture large distortion of tissue boundaries over long time scales by accurate and explicit
tracking of the interfacial motion in the system.

5.2 An Expansion–Repression Model for the Imaginal Wing Disc in a Closed Geometry

The Drosophila imaginal wing disc serves as a popular model system for studying morphogen
gradients and their role in long-range extracellular signaling in a developmental tissue. In
particular, the morphogen decapentaplegic (Dpp), a bone morphogenetic protein (BMP)
homolog, and its effects on wing vein placement and on growth of the wing disc are at the
center of many recent experimental and modeling studies [3,29,34]. Dpp is produced along
a thin region oriented along the dorsal-ventral axis and, as a result, its gradient forms along
the anterior-posterior axis of the wing disc during the larval stages of development [55]. It
has been shown experimentally that the gradient persists as the wing grows and maintains
approximately the same length scale even as it assumes different sizes [59].

Recent work incorporates experiments and mathematical modeling to demonstrate that
the morphogen Pentagone (Pent) diffuses throughout the disc and interacts extracellularly
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Fig. 3 Distributions of the densities of stem cells (C0), TA cells (C1), TD cells (C2), concentrations of A and
G, and pressure (P) at time t = 125 for stratified epithelium simulations with a free-form stem cell niche.
Initial conditions and the assumed spatiotemporal discretization are those used for this figure, and parameters
used are given in Table 7

with Dpp in an expansion–repression mechanism to properly scale the Dpp gradient relative
to the size of the disc [7,26]. One of the models used to study this interaction, which does not
explicitly include growth of the disc, is a two-component system consisting of a morphogen,
[M], which serves as a repressor, such as Dpp, and an expander, [E], like Pent, in which the
expander slows the degradation of the repressor while the repressor inhibits the production
of the expander [7].

To account for the tissue growth, the equations for morphogens [7] need addition of
convective terms, and the equations become

∂[M]
∂t

+ ∇ · ([M]V) = DM�[M] − βM

1 + [E]/E0
[M] + η(x), (85)

∂[E]
∂t

+ ∇ · ([E]V) = DE�[E] − βE [E] + αE
T H

rep

T H
rep + [M]H

. (86)

Here, DM and DE are respective diffusion coefficients; βM and βE are respective maximal
degradation rates; αE is the maximal production rate of [E]; T H

rep and E0 are corresponding
half-maximal effective concentrations (or EC50s) for the feedback represented by a Hill
function with H as a Hill exponent. The function η(x) describes the production of Dpp in
the disc with a smooth form

η(x) = η̄

1 + ζ x2 , (87)

in which η̄ is the maximal production rate.
To study the expansion–repression mechanism on a growing closed geometric domain, it

is natural to use polar coordinates to represent the equations describing the imaginal wing
disc. Similar to the morphogen systems in stratified epithelia, we assume that the time scale
in which the morphogen reaches a steady state is significantly quicker than that of the tissue
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Table 9 Errors, orders of accuracy, and CPU time for calculations of growth and the expansion–repression
system on the imaginal wing disc given in Eqs. (35–37, 85–86) up to time up to time t = 6.25 × 10−2

N P h [M] CPU (s)

Error Order Error Order Error Order

16 – – – – – – 0.571

32 1.20 – 4.73e−2 – 22.5 – 8.62

64 0.132 3.18 1.10e−2 2.11 22.5 0.82 140.4

128 1.70e−2 2.96 2.23e−3 2.30 3.02 2.07 2,595.9

256 3.52e−3 2.27 4.89e−4 2.19 0.374 3.02 48,841.2

A linear scaling F(R,, τ) = H(, τ)R is used for the transformation in Eqs. (38–40) along with� = 0.1.
�τ = �2 is taken for time discretization. Initial conditions: H(θ, 0) = 45[1 − 0.175 sin(3θ)(1 +
0.075 cos(4θ))]. Parameters used are adapted from the original model in [7]: DM = E0 = 1, DE =
10, βM = 10−2, βE = 10−4, η̄ = 1, ζ = 0.1, αE = 10−3, Trep = 10−1, ξ = 10−5, and K = 1.
The Hill exponent is chosen to be 4

growth. Consequently, the morphogen system can be solved at a quasi-steady state, and, after
applying the transformation, Eqs. (85–86) in polar coordinates become,

0 = DM

(
1

F2 [M]+G4[M]R R +G5[M]R +G6[M]R

)
− βM

1+[E]/E0
[M]+η(X),

(88)

0 = DE

(
1

F2 [E]+G4[E]R R +G5[E]R +G6[E]R

)
−βE [E]+αE

T H
rep

T H
rep + [M]H

.

(89)

No-flux boundary conditions along our dynamic boundary similar to the case without growth
are imposed on the dynamic boundary, H , with the following form,

Ur

∣∣∣
r=H

= Hθ
H2 Uθ

∣∣∣
r=H

, (90)

UR

∣∣∣
R=1

= H
G3 H2 + G2 H

U
∣∣∣

R=1
, (91)

where U = [M] or [E]. To compute these transformed equations, we first use second-order
central difference approximations in both the R and directions. Since each equation is linear
in one variable, we treat the resulting nonlinear system using a linear multigrid algorithm
and a fixed point iterative solver.

To test the accuracy of our implementation, we first impose uniform proliferation by taking
� to be constant. Numerical simulations in which the disc is allowed to grow and then the
nonlinear expansion–repression system is computed at the end of the simulation after growth
has occurred, as opposed to at each time step, demonstrate a second-order accuracy in space
and time as shown in Table 9. The observation in which order of three is obtained at larger
N = 256 in Table 9 suggest that the error may be mainly dominated by a dominance of error
in the-direction, in which fourth-order approximations are used to compute the movement
of H and the internal pressure of the tissue.

Experimental evidence suggest that the slope of the Dpp gradient prompts uniform pro-
liferation of the wing disc as it grows [52]. Such regulation in growth in principle may be
modeled via additional modifications in equations for [M]. Because the focus of this study
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Fig. 4 Distributions of [M] on the imaginal wing disc a prior to and b after growth of the disc. [M] is also
plotted on the unit square after scaled by F(R,, τ) = H(, τ)R c prior to and d after growth of the disc.
A proliferation profile of � = (1 − sin(3θ))(1 + cos(4θ) is assumed. A discretization size of N = 512
is used along with �t = 5 × 10−3. Initial conditions and parameters used are given in Table 9 aside from
ζ = 4, DM = 10−2, DE = 1, and η̄ = 0.1

is numerical methods for tracking the moving boundaries, we instead impose a spatial dis-
tribution of influx of cells in � such that the disc maintains its relative shape as it grows. In
particular, we allow the tissue to grow until the anterior–posterior axis approximately doubles
in length at t = 1. Figure 4a, b shows the distribution of [M] on the disc at times t = 0 and
t = 1, respectively. To study how the length scales of the morphogen gradient compares,
each of the scaled distributions are plotted on the unit disc using our linear transformation in
Fig. 4c, d. It, then, can be seen that presence of an expander may increase the actual length
scale of the gradient of [M] as the disc grows in two dimensions, as similarly observed by
one-dimensional models [7]. This notion is also evidenced by higher [M]-values after growth
has occurred. Whether in an open or closed geometry, our computational framework allows
for the incorporation of diffusive morphogens and extracellular signaling, which enables
tissue level models to account for crucial biological processes at the molecular level.

6 Conclusions

Spatial modeling of the stem cell niche and growth in developing and regenerative tissues
consisting of multiple physical and biochemical processes is computationally challenging.
In this paper, we have presented a continuum model of moving boundaries for tissue growth
involving stem cells, cell lineages, and diffusive feedback molecules. In particular, we have
developed a robust and accurate numerical method using a transformation technique to cap-
ture one or two dynamic boundaries in open geometries and growing closed geometries that
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are represented in polar coordinates. One important feature of the method is its capability of
placing more grid points near dynamic boundaries that are tracked explicitly for increased
resolution through a scaling by the transformation function. Another key element is an inte-
gration of a high-order finite difference approximation and a multigrid iterative solver for
solving the transformed incompressibility equation for tissue.

This approach enables accurate computation of a moving boundary where surface tension
exists due to cell-to-cell adhesion and where intertissue signaling molecules diffuse across the
interface, leading to a second-order accuracy of the overall method in both space and time.
Most importantly, such an approach enables the robust computation of undulated bound-
aries during tissue growth that are driven by the leakage of diffusive feedback molecules
through explicitly and accurately tracked moving boundaries and the molecules’ regulation
of stem cell fates. In particular, our method is robust in comparison to an iterative pseudospec-
tral approach that is accurate but less robust in resolving deformed interfaces. Applications
to developing stratified epithelia and the imaginal wing disc demonstrate that the overall
numerical method is flexible in incorporating various biochemical processes (e.g. multiple
morphogens) and capable of simulating long-term morphological tissue distortion.

In several instances, adaptive mesh refinement is used for the computation of interfacial
motion computation in biological systems for necessary accurate boundary treatment [10,14],
but this approach comes with a difficulty in implementation and, often, the inclusion of
pre-existing software packages [41,62]. Our method allows for the accurate treatment of
the boundary in a natural fashion by clustering grid points near dynamic interfaces using
mathematical transformations to eliminate the necessity to include adaptive mesh refinement.
However, with this approach comes the more difficult treatment of differential operators after
transformation and also the constraint that the interface must be described as the graph of a
function of X or  alone.

The modeling and computational framework presented can also be extended to other
complex biological systems, such as the regenerative roles of stem cells in the liver and
heart, or stem cell differentiation during tooth development. Importantly, each of the respec-
tive computational domains of these possible applications include interfaces that may be
described as a graph of a function of one spatial variable and may contain more mechanistic
effects, several lineages, and more complex downstream regulatory networks. The meth-
ods presented here can also be extended to geometries with non-simply connected domains,
which may be relevant for tissue culture models in vitro in which intertissue communica-
tion by morphogens occurs, by considering separate pressure and interfacial variables for
each simply connected subdomain. For efficient exploration of such complex models, it is
important to refine the multigrid algorithms to account for variable coefficients in the tissue
incompressibility equations such that the number of iterations during relaxations required
for convergence becomes less sensitive to the size of the computational grid. More advanced
temporal integrators, such as semi-implicit integration factor methods designed for stiff sys-
tems [45,63], may be needed for better treatment of multiple time scales that are associated
with many biochemical processes during tissue growth. Finally, it would be interesting to
extend the model and computational framework to three spatial dimensions, providing a
better understanding and additional insight into tissue morphologies and the roles of stem
cells in growth in the third spatial direction that cannot be captured by two-dimensional
models [27].

Acknowledgments This work was partially supported by National Institutes of Health Grant Nos.
R01GM67247 and P50GM76516 and National Science Foundation Grant Nos. DMS-0917492 and DMS-
1161621. J.O. has been supported by NIH training Grants T32EB009418 and T32HD060555.

123



J Sci Comput

Open Access This article is distributed under the terms of the Creative Commons Attribution License which
permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source
are credited.

7 Appendix: An Iterative Approach Using Pseudospectral Method

The necessary high-order of accuracy in the X -direction required for computation of the
internal tissue pressure may be also obtained using a pseudospectral approach along with
an iterative scheme similar to the method for computing the incompressible Navier–Stokes
equations [58]. Here we provide a detailed description for this approach for the tissue growth
system in terms of solving the Poisson’s equation for a comparison with the presented high-
order finite difference approach.

After a transformation from � to the unit square and rearranging terms in Eq. (21), we
obtain,

PX X + PY Y = φ(X, Y, τ ): = �(X, Y, τ )+ (1 − g4)PY Y − g5 PXY − g6 PY , (92)

P
∣∣∣
Y=1

= ξ
h X X

(
1 + (h X )2

)3/2 , (93)

PY

∣∣∣
Y=0

= 0. (94)

Then, one applies a discrete Fourier transform (after assuming NX to be even),

P = a0

2
+

NX /2∑

k=1

(ak cos(2πk X)+ bk sin(2πk X)) , (95)

φ = c0

2
+

NX /2∑

k=1

(ck cos(2πk X)+ dk sin(2πk X)) , (96)

κ = α0

2
+

NX /2∑

k=1

(αk cos(2πk X)+ βk sin(2πk X)) , (97)

where ak = ak(Y, τ ), bk = bk(Y, τ ), ck = ck(Y, τ ), dk = dk(Y, τ ), αk = αk(τ ), and βk =
βk(τ ). This leads to one-dimensional boundary value problems for the Fourier coefficients,

ak,Y Y − 4π2k2ak = ck, (98)

bk,Y Y − 4π2k2bk = dk, (99)

a0,Y Y = c0. (100)

ak,Y

∣∣∣
Y=0

= 0, bk,Y

∣∣∣
Y=0

= 0, a0,Y

∣∣∣
Y=0

= 0, (101)

ak

∣∣∣
Y=1

= αk, bk

∣∣∣
Y=1

= βk, a0

∣∣∣
Y=1

= α0. (102)

The ordinary differential equations for ak and bk are solved analytically by

ak(Y ) = 1

4πk

[
e2πkY + e−2πkY

e2πk + e−2πk (w1(1)+ 4πkαk)− w1(Y )

]
, (103)

bk(Y ) = 1

4πk

[
e2πkY + e−2πkY

e2πk + e−2πk (w2(1)+ 4πkβk)− w2(Y )

]
, (104)

a0(Y ) = α0 + w3(1)− w3(Y ), (105)
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where

w1(Y ) = e−2πkY

Y∫

0

e2πkzck(z)dz − e2πkY

Y∫

0

e−2πkzck(z)dz, (106)

w2(Y ) = e−2πkY

Y∫

0

e2πkzdk(z)dz − e2πkY

Y∫

0

e−2πkzdk(z)dz, (107)

w3(Y ) =
Y∫

0

zc0(z)dz − Y

Y∫

0

c0(z)dz. (108)

It is important to note that ek becomes very large as k becomes large. So, even though the
solutions are bounded between 0 and 1, the values of certain integrals that must be computed
can become very large as k varies. To handle this difficulty, we will use a finite difference
approach to compute the solutions to the ordinary differential equations for ak and bk , but
the analytical solution is used for a0. Also, series expansions could be used as an alternative
remedy.

7.1 Computational Algorithm for Pseudospectral Approach

begin with an initial h, t = 0, and �(x, y, t) on a grid (1, Nx )× (1, Ny + 1)
compute scaling for the system (compute g-values) and curvature, κ
prescribe a value for M to determine how often to update h
begin with an initial guess for P
while t < T do

m = 0
compute FFT of curvature, κ , for αk , βk
while ‖Pm − Pm−1‖ ≥ ε do

m = m + 1
compute φm = � + (1 − g4)P

m−1
Y Y − g5 Pm−1

XY − g6 Pm−1
Y on unit square

for j = 1 to Ny + 1 do
compute FFT of φm

j for cm
j,k and dm

j,k
end for
for k = 1 to Nx/2 do

solve for am
k using the solution to corresponding ODE

solve for bm
k using the solution to corresponding ODE

end for
solve for am

0 using the solution to corresponding ODE
for j = 1 to Ny + 1 do

compute IFFT of am
j,k and bm

j,k to obtain Pm
j

end for
if ‖Pm − Pm−1‖ ≥ ε and m ≡ 0 mod M then

solve for h using: hτ +
(

PX

∣∣∣
Y=1

− g2 PY

∣∣∣
Y=1

)
h X = PY

∣∣∣
Y=1

compute scaling for the system (compute g-values) and curvature, κ
compute FFT of curvature, κ , for αk , βk

end if
end while
solve for h using: hτ +

(
PX

∣∣∣
Y=1

− g2 PY

∣∣∣
Y=1

)
h X = PY

∣∣∣
Y=1

compute scaling for the system (compute g-values) and curvature, κ
t = t +�t

end while
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