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In the development of a biological entity, ligands (such as Decapentaplegic
(Dpp) along the anterior–posterior axis of the Drosophila wing imaginal disc)
are synthesized at a localized source and transported away from the source
for binding with cell surface receptors to form concentration gradients of
ligand–receptor complexes for cell signaling. Generally speaking, activities such
as diffusion and reversible binding with degradable receptors also take place
in the region of ligand production. The effects of such morphogen activities
in the region of localized distributed ligand source on the ligand–receptor
concentration gradient in the entire biological entity have been modeled and
analyzed as System F in [1]. In this paper, we deduce from System F, a related
end source model (System A) in which the effects of the distributed ligand
source is replaced by an idealized point stimulus at the border between the
(posterior) chamber and the ligand production region that simulates the average
effects of the ligand activities in the production zone. This aggregated end
source model is shown to adequately reproduce the significant implications
of System F and to contain the corresponding ad hoc point source model,
System R of [2], as a special case. Because of its simpler mathematical structure
and the absence of any limitation on the ligand synthesis rate for the existence
of steady-state gradients, System A type models are expected to be used
widely. An example of such application is the recent study of the inhibiting
effects of the formation of nonsignaling ligand–nonreceptor complexes [3].
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1. Introduction

Morphogens (or ligands) are molecular substances that bind to cell surface
receptors and other kinds of (nonreceptor) molecules. The gradients of
morphogen-receptor complex concentrations are known to be responsible for
cell signaling and tissue patterning during the developmental phase of the
biological host. For a number ofmorphogen families (includingDecapentaplegic
(Dpp) along the anterior–posterior axis in the wing imaginal disc of Drosophila
fruit flies), it is well established that the concentration gradients are formed by
morphogens transported away from a localized production site and, in the
process, reversibly bound to the surface receptors of cells, some are near
and others further away from the production site (see [4–6], [7] and other
references cited in [8]). Recently, the mechanism of morphogen transport
has been reexamined by both theoreticians and experimentalists to resolve
the uncertainty regarding the role of diffusion in transporting morphogens
(see [8] and references therein). Appropriate mathematical models of different
complexity were formulated and analyzed in [8] and [2] to study the diffusive
transport of morphogens. Each consists of a system of partial differential
equations and auxiliary conditions (defining an initial-boundary value problem,
abbreviated as IBVP) reflecting a relevant selection of known morphogen
activities in the wing disc. The first group of results from our quantitative
investigation was reported in [8] with the mathematical underpinning of the
results given in [2] (see also [9]). These results show that diffusive models
of morphogen transport can account for much of the known experimental
data including those that have been used to argue against diffusive transport.
When observations and data are correctly interpreted, they not only fail to
rule out diffusive transport, they favor it. At the same time, they suggest that
models that allow for additional morphogen activities are needed to reproduce
and explain other known experimental data such as robustness or to remove
unexpected restrictions such as that imposed on the ligand synthesis rate for
the existence of steady-state behavior in these models. Efforts of this nature
can be found in [10] and [3] and the references therein.

The one-dimensional models (Systems B, R, and C) of [8] and [2] all
idealized the narrow region between the anterior and posterior chamber of the
wing disc as a point. In reality, Dpp is synthesized in a production site of
finite extent between the two chambers of the wing disc in which morphogen
activities such as diffusion and reversible binding with renewable receptors
also take place. A subsequent investigation [1] analyzed an extracellular model
of the wing disc corresponding to System R in [2], but now with a spatially
distributed ligand synthesis rate over a (narrow) region between the two
chambers, henceforth designated as System F. One significant feature of this
distributed source model is that unlike System R (and Systems B and C), there
is no longer a restriction on the morphogen production rate for the existence
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of a steady-state concentration of ligand–receptor complexes. In this paper,
we will deduce from System F an appropriate aggregated source model to
reduce the complexity of the mathematical model and the attendant analysis
and computations. This derived aggregated point source model, designated as
System A, is shown to reproduce all the significant consequences of System F
on the one hand and to contain System R as a special case on the other hand,
delimiting the range of applicability of the latter (and related ad hoc point
source models) in the process. Because of their relative mathematical simplicity
along with their effective characterization of the relevant biological activities,
aggregate source type models are expected to be more attractive for the
purpose of analysis and therefore more widely used in the study of morphogen
gradients. One example of such applications in [3] provides an explanation for
the apparent inconsistency between the experimental results of [11] and [12].

2. Spatially distributed synthesis of morphogens and receptors

2.1. An extracellular formulation

In this paper, we derive from a spatially distributed morphogen source model
of the Drosophila wing disc of [1] (System F), a simpler model with an
aggregated source at the border between the anterior and posterior chamber.
As in [8], we simplify the development by working with a one-dimensional
model for the posterior chamber of the wing disc ignoring variations in
the ventral–dorsal direction and the apical-basal direction; extensions of the
one-dimensional model to account for developments in these other directions
are straightforward (see [9] for example). We will work with an extracellular
formulation similar to System R in [2] where we have shown that the results
for such a model may be reinterpreted as the corresponding results for a model
where morphogen–receptor complexes internalize (through endocytosis) before
degradation (see also [13]). Features and results of System F [1] relevant to the
development of a related aggregated end source model will be summarized in
this section. In Section 3, we will aggregate the effects of the activities in the
ligand synthesis region of this model to result in a corresponding end source
model. The corresponding ad hoc point source model (System R) previously
investigated in [2] is then seen to be a limiting case of the aggregated end
source model (System A).

Let [L(X , T)] be the concentration of a diffusing ligand such as Dpp at
time T and location X in the span from the midpoint of the morphogen
production region X = −Xmin to the edge of the posterior chamber of the
wing disc at X = Xmax with morphogen produced only in −Xmin < X < 0.
Let [R(X , T)] and [LR(X , T)] be the concentration of unoccupied receptors
and ligand occupied receptors, respectively. For the developmental processes
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described in [8], we add to Fick’s second law for diffusive ligand transport
(∂[L]/∂T = DL∂2[L]/∂X2, DL being the diffusion coefficient) terms that
incorporate the rate of receptor binding, −kon[L][R], and dissociation, koff[LR],
with kon and koff being the binding rate constant and dissociation rate constant,
respectively. In living tissues, molecules that bind receptors do not simply stay
bound or dissociate; they also (endocytose and) degrade [7]. In accounting
for the time rate of change of the ligand–receptor complexes, we allow for
constitutive degradation of [LR] by introducing a degradation rate term with a
rate constant kdeg. There is also a separate accounting of the time rate of change
of the concentration of unoccupied receptors as they are being synthesized and
degrade continuously in time (with a degradation rate constant kg as in [8]
(=k ′

deg in [2])). In this way, we obtain the following reaction-diffusion system
for the evolution of the three concentrations [L], [LR], and [R] (see [1]):

∂[L]

∂T
= DL

∂2[L]

∂2X
− kon[L][R] + koff[LR] + VL (X, T ), (1)

∂[LR]

∂T
= kon[L][R] − (koff + kdeg)[LR], (2)

∂[R]

∂T
= VR(X, T ) − kon[L][R] + koff[LR] − kg[R]. (3)

for −Xmin < X < Xmax and T > 0, where V L(X , T ) and V R(X , T ) are the
rates at which ligand molecules and receptors are synthesized, respectively. In
[2], we were interested only in the portion of the wing disc corresponding to
X > 0 where there is no morphogen production (so that V L(X , T ) = 0 for
X > 0) with ligand introduced into the region 0 < X < Xmax through a point
source at the end X = 0. We will discuss in later sections the relation between
such an ad hoc point source model (System R) and the present distributed
source model (designated as System F henceforth), which considers explicitly
the activities in the region −Xmin < X < 0 where morphogens are produced.

With −Xmin being the midpoint of the ligand production region, we have by
symmetry of the anterior and posterior chamber of the wing disc

X = −Xmin :
∂[L]

∂X
= 0 (T > 0). (4)

The edge of the posterior chamber at the far end of the wing disc is taken to be
absorbing so that

X = Xmax : [L] = 0 (T > 0). (5)

At T = 0, we have the initial conditions

[L] = [LR] = 0, [R] = [R0(X )] (−Xmin < X < Xmax), (6)

where R0(x) is the distribution of steady-state unoccupied receptor concentra-
tion prior to the introduction of ligand.
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To reduce the number of parameters in the problem, we let R̄0 be a reference
unoccupied receptor concentration level (to be specified later) and introduce
the normalized quantities

t = DL

X 2
max

T, x = X

Xmax
, xm = Xmin

Xmax
, (7)

vL (x, t) = VL/R̄0

DL/X 2
max

, vR(x, t) = VR/R̄0

DL/X 2
max

,

{a, b, r, r0} = 1

R̄0
{[L], [LR], [R], [R0]}, (8)

{ f0, g0, gr , h0} = 1

DL/X 2
max

{koff, kdeg, kg, kon R̄0}. (9)

In terms of these new quantities, we rewrite the IBVP for System F above in
the following normalized form

∂a

∂t
= ∂2a

∂x2
− h0ar + f0b + vL (x, t) (−xm < x < 1) (10)

∂b

∂t
= h0ar − ( f0 + g0)b,

∂r

∂t
= vR(x, t) − h0ar − grr + f0b (−xm ≤ x ≤ 1) (11)

x = −xm :
∂a

∂x
= 0, x = 1 : a = 0 (12)

for t > 0 and

t = 0 : a = b = 0, r = r0(x) (−xm < x < 1). (13)

2.2. Time-independent steady-state behavior

For the purpose of this paper, it suffices to limit consideration to ligand and
receptor synthesis rates of the form

vL (x, t) = vL (x) = v̄L H (−x) =
{

v̄L

0
, with v̄L = V̄ L/R̄0

DL/X 2
max

(14)

vR(x, t) = vR(x) = v̄p{ρ2H (−X ) + H (X )} ≡ v̄pr0(x), v̄p = V̄ p/R̄0

DL/X 2
max

(15)

for t > 0 and nonnegative constants V̄ L , V̄ p, and ρ2. In (14) and (15), H(·) is
the Heaviside unit step function. With the initial receptor concentration taken
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to be the steady-state receptor distribution prior to the onset of morphogen
production, R0(x) = V R(X )/kg, we take

R̄0 = V̄ p

kg
, (16)

where V̄ p is the uniform receptor synthesis rate for x > 0 so that

v̄p = gr , R0(x) = R̄0r0(x) = R̄0{ρ2H (−X ) + H (X )}. (17)

We are interested in a time-independent steady-state solution ā(x), b̄(x),
and r̄ (x) for the system (10)–(12). For such a solution, we may set the time
derivatives in these equations to zero to get

0 = ā′′ − h0ār̄ + f0b̄ + vL (x) (−xm < x < 1) (18)

0 = h0ār̄ − ( f0 + g0)b̄, 0 = vR(x) − h0ār̄ − gr r̄ + f0b̄ (−xm ≤ x ≤ 1),

(19)

where a prime indicates differentiation with respect to x , ( )′ = d( )/dx . The
nonlinear system of ordinary differential equation (ODE) (18) and (19) is
augmented by the boundary conditions

ā′(−xm) = 0, ā(1) = 0. (20)

With vL(x) and vR(x) both being piecewise constant as given in (14) and (15),
the form of the (18) and (19) requires that ā(x) and its first derivative be
continuous at x = 0.

As in the steady-state problem for System R in [2], the two equations in
(19) may be solved for b̄ and r̄ in terms of ā to obtain

r̄ = α0r0(x)

α0 + ζ ā
, b̄ = r0(x)ā

α0 + ζ ā
, (21)

where

ζ = g0
gr

= kdeg
kg

, α0 = g0 + f0
h0

. (22)

The expressions in (21) are now used to eliminate r̄ and b̄ from (18) to get a
second-order ODE for ā alone:

ā′′ − g0r0(x)ā

α0 + ζ ā
+ vL (x) = 0 (−xm < x < 1). (23)

This second-order ODE is supplemented by the two boundary conditions (20),
keeping in mind also the continuity conditions on ā and ā′ at x = 0.
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For our choice of synthesis rates V L and V R, we have vL = 0 and r0(x) = 1
for the range 0 < x < 1 so that

ā′′ = g0ā

α0 + ζ ā
= gr ā

αr + ā
(0 < x < 1), αr = gr

g0
α0. (24)

In the complementary range −xm < x < 0, we have vL = v̄L and r0(x) = ρ2

so that

ā′′ − ρ2g0ā

α0 + ζ ā
+ v̄L = 0 (−xm < x < 0).

for some prescribed value of ρ2 ≥ 0.
For the model with a distributed ligand synthesis rate in (−xm, 0) formulated

above, ā(0) is determined by the ligand activities within the production region
(−xm, 0) and is therefore not known a priori. The coupling between the
morphogen activities in the two regions −xm < x < 0 and 0 < x < 1 (with
ā(x) and ā′(x) continuous at x = 0) makes it necessary to consider a single
boundary value problem (BVP) for the entire solution domain −xm < x <

0, which is structurally different from the corresponding BVP for the point
source cases considered in [8, 2]. As such, the issues of existence, uniqueness,
monotonicity, and stability of the steady-state concentration gradients were
analyzed anew in [1]. We established there the existence and linear stability of
a unique, monotone steady-state concentration of ligand–receptor complexes
for System F without any restriction on the ratio of ligand synthesis rate to
the receptor-mediated degradation rate. Asymptotic solutions various special
cases were also obtained in [1] to delineate the dependence of the steady-state
behavior on the biological parameters. For subsequent comparisons with results
of the aggregated source model to be derived in Section 3, we will summarize
some of these approximate solutions in the next subsection.

2.3. Approximate solutions

2.3.1. No receptor synthesis in the morphogen production region. For the
extreme case where there is no receptor synthesis in the morphogen production
region −xm < x < 0 so that ρ2 = 0 (and thereby no concentration of either
occupied or unoccupied receptors in that interval), the exact solution of the
ODE in that region and the reflecting end condition a′(−xm) = 0 is

ā(x) = v̄L

{
c0 − xm x − 1

2
x2

}
(−xm < x < 0).

The constant of integration c0 is to be determined through the continuity
conditions at x = 0. It turns out that we can in fact determine the solution in
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the region x > 0 without knowing c0 and then calculate c0 from the solution
obtained. This is because we have

ā′(0) = −v̄L xm, (25)

which is a known quantity. Because of the continuity of ā′ at the junction x =
0, the condition (25) serves as the second boundary condition (in addition to
ā(1) = 0) for the ODE

ā′′ = g0ā

α0 + ζ ā
(0 < x < 1).

This two-point BVP determines ā(x) in 0 < x < 1. The continuity of ā at
x = 0 then determines c0 to be

c0 = ā(0)

v̄L
.

For ζ � 1, an explicit solution for the problem is

ā(x) ∼ ā0(x) =



v̄L

[
xm

µ
tanhµ − xm x − 1

2 x2
]

(−xm < x < 0)

v̄L xm

µ coshµ
sinh(µ(1 − x)) (0 < x < 1),

(26)

where

µ2 = g0
α0

≡ ψ, (27)

is generally >1 for useful gradients. In particular, we have

ā(0) ∼ ā0(0) = v̄L xm

µ
tanhµ. (28)

For more general ζ , we may determine ā(x) for 0 ≤ x ≤ 1 numerically and
then calculate c0 from the result obtained.

2.3.2. Perturbation solution for ζ � 1(ρ2 > 0). For ρ2 > 0 and ζ < 1, we
consider a perturbation solution in ζ :

ā(x ; ζ ) =
∞∑

k=0

āk(x)ζ
k .

The leading term ā0, determined by the BVP

d2ā0

dx2
− µ2r0(x)ā0 + vL (x) = 0, ā′

0(−xm) = ā0(1) = 0,

is an adequate approximation of the exact solution for a sufficiently small
value of ζ so that ζ ā � α0. Here, we have, in terms of the Heaviside unit step
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function H (·), r0(x) = {H (x) + ρ2H (−x)}, with ā0 and ā′
0 continuous at

x = 0. The exact solution for this linear BVP is

ā0(x) =



v̄L
ρ2µ2

{
1 − cosh(µ)

�m
cosh(ρµ(xm + x))

}
(−xm < x < 0)

v̄L sinh(ρµxm )
ρµ2�m

sinh(µ(1 − x)) (0 < x < 1)
(29)

where

�m = cosh(µ) cosh(ρµxm) + ρ sinh(µ) sinh(ρµxm),

with

ā(0) ∼ ā0(0) = v̄L

ρµ2�m
sinh(ρµxm) sinh(µ). (30)

Higher-order correction terms of the perturbation series can also be obtained.
Note as ρ −→ 0, the results reduce to those of the last section. In particular,

we have from (30)

ā(0) ∼ ā0(0) −→ v̄L xm

µ
tanhµ. (31)

as in (28). On the other hand, with xm → 0 but keeping v0 = v̄L xm fixed, (30)
becomes

ā0(0) = v̄0

µ2
[
ρ2xm + 1

µ
coth(µ)

] → v̄0

µ
tanh(µ). (32)

Unless we keep v̄L xm = v0 fixed and finite as xm → 0, we would not maintain
a finite aggregated ligand synthesis rate for an equivalent end source at x = 0.
Also, we would need to keep ρ2xm = ρ2

m fixed if a prescribed aggregated rate
of ligand–receptor interaction should be maintained at the source end (as in
the case of Systems B, C, and R).

2.3.3. High morphogen production rate. For very high morphogen production
rate so that ζ v̄L 
 α0, we let ā(x) = v̄L Ah(x). The BVP for ā may be written
in terms of Ah(x) as

A′′
h = g0r0(x)Ah

α0 + ζ v̄L Ah
− H (−x), A′

h(−xm) = 0, Ah(1) = 0

with A′
h and Ah continuous at x = 0. A leading term approximate solution

A0(x) for ζ v̄L 
 α0 is determined by the linear BVP

A′′
0 = g0

ζ v̄L
r0(x) − H (−x) ∼ −H (−x), A′

0(−xm) = 0, A0(1) = 0
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and A′
0 and A0 continuous at x = 0. If in addition,we have ζ v̄L 
 max{g0, g0ρ2},

the solution of this problem is

ā(x) ∼
{

v̄L

{
xm − (

xm x + 1
2 x2

)}
(−xm < x < 0)

v̄L xm(1 − x) (0 < x < 1)
(33)

with

ā(0) ∼ v̄L xm and ā′(0) ∼ −v̄L xm . (34)

3. The aggregated source formulation

The theoretical results of [1] for System F with a distributed ligand source
in −xm < x < 0 provide us with the assurance that we can meaningfully
compute the steady-state gradients of interest for any ligand synthesis rate V̄ L .
However, the presence of the two distinct regions, −xm < x < 0 and 0 <

x < 1, with different morphogen activities poses unwelcome tedium to the
solution process except for a small region of the parameter space. It is therefore
desirable to find an appropriate simplification of this model. One possible
approach is to reduce the problem to one for a single solution domain with
morphogens produced and infused at an end point. In fact, ad hoc end source
models were first developed and analyzed (as Systems B, R, and C) in [8], [13],
and [2] principally because the mathematical problems involved were simpler
than their distributed source counterpart. We now use System F to show how
these ad hoc point source systems may be related to the corresponding more
realistic distributed source models. We do this by aggregating the ligand
activities in −xm ≤ x < 0 and suitably approximating the aggregated results
for small xm. In doing so, we reduce the effects of the distributed source to
a point source at x = 0 that simulates an (approximate) average effect of
the distributed source. However, unlike the previous ad hoc formulations, the
aggregated end source problem developed below is a direct and appropriate
consequence of the distributed source model with all approximations made
explicitly in the derivation.

For an appropriate reduction of the steady-state problem of System F to an
aggregate source problem, we recall the following differential equation for the
steady-state free ligand concentration in the range −Xmin < X < 0 before
normalization obtained from (1) and (2) after setting the time derivative to zero:

0 = DL
d2L

dX 2 − kdeg[LR] + V̄ L (−Xmin < X < 0). (35)

To capture the overall effect of the morphogen activities in the region of ligand
synthesis, we integrate (35) over the interval −Xmin ≤ X ≤ 0 to get
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DL

[
dL

dX

]
X=0

− kdeg

∫ 0

−Xmin

[LR] dX + V̄ L Xmin = 0,

or

DL

Xmin

[
dL

dX

]
X=0

− kdeg[LR]X=X̃ + V̄ L = 0. (36)

for some X̃ in the interval (−Xmin, 0). In deducing (36), we have used the
reflecting boundary condition at the end X = −Xmin to eliminate a term
involving dL/dX at that end. The change of [LR] over the interval [−Xmin, 0]
is generally expected to be relatively small compared to the drop from X = 0
to X = Xmax (see subsection 2.3 above and Section 3 in [1]). In that case, we
may approximate [LR]X=X̃ by [LR]X=0− with 0− indicating a point slightly
less than 0. This gives the following approximation of the exact relation (36):[

DL

Xmin

dL

dX
− kdeg[LR] + V̄ L

]
X=0−

� 0

or, in terms of the dimensionless variables,

Xmax

Xmin
ā′(0−) − g0b̄(0−) + ν̄L = 0, (37)

where we indicated the acceptance of the approximation by using = instead
of � henceforth. With b̄(x) and r̄ (x) given in terms of ā(x) by (21),

r̄ = α0ρ
2

α0 + ζ ā
, b̄ = ρ2ā

α0 + ζ ā
(−xm ≤ x < 0), (38)

we may use the second relation in (38) to eliminate b̄(0−) in (37) to get a
boundary condition at x = 0 on ā(x) alone as we did previously:

σ0ā
′(0) − g0ρ2ā(0)

α0 + ζ ā(0)
+ ν̄L = 0, σ0 = Xmax

Xmin
. (39)

Note that we have replaced 0− by 0 since both ā and ā′ are continuous at x = 0.
The relation (39) gives an average effect of the distributed ligand synthesis

rate in x < 0 on the morphogen concentration at the border between the ligand
production region and the posterior chamber. It serves as a boundary condition
to augment the physical condition ā(1) = 0 of a sink at the far edge X = Xmax

so that the ODE (24) and these two boundary conditions define a BVP for
ligand activities in the wing disc chamber 0 ≤ x ≤ 1 with an aggregated
source at x = 0. Once we know ā(x), the two other concentration gradients
b̄(x) and r̄ (x) are obtained from (21) with r0(x) = 1 for x > 0. As such,
we have derived from System F an aggregated end source model, which we
will designate as System A henceforth. The effects of a distributed source in
−Xmin ≤ X < 0 are captured by an end flux at X = 0 given in terms of the
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parameters σ 0 = Xmax/Xmin and ρ2 in the boundary condition (39), where ρ2

is the ratio of receptor synthesis rate in the distributed source region X < 0 to
that of the wing disc chamber X > 0.

In view of (39), the ad hoc point source model, System R, may be considered
as limiting the special case of the aggregated end source model System A in
two different ways. For Xmin 
 Xmax so that σ 0 � 1, it is reasonable to
neglect the term multiplied by σ 0 (which corresponds to the limiting case of
σ 0 = 0). System A is then reduced to System R if the receptor synthesis rates
in x < 0 and x > 0 are the same so that ρ2 = 1.

At the other extreme with Xmin � Xmax (as in the case of the Drosophila
wing disc), we have σ 0 = 1/xm 
 1 so that the flux term appears to dominate
the left-hand side of (39), and we would have ā′(0) = 0 in the limit as xm →
0. However, by holding the morphogen synthesis rate V̄ L fixed as Xmin tends
to zero; the total concentration of morphogen produced over the entire interval
−Xmin < X < 0 would tend to zero, resulting in no ligand production (and
therefore no net ligand flux across X = 0). An alternative formulation of a point
source model would be to keep V̄ L Xmin/Xmax = V0 (and hence ν̄L xm = v0)
fixed so that we have the same ligand synthesis rate at X = 0 as Xmin → 0.
In that case, we see later that System R becomes a first approximation of
System A if we have ρ2xm = 1 and ψ = µ2 = g0/α0 is sufficiently large so
that σ 0/ψ = (µ2xm)−1 � 1.

In either case, the present reduction of the System F to an aggregated
end source formulation has made it possible to delineate the limitation of
System R and its range of applicability. We will comment further on the
numerical significance or insignificance of the flux term in (39) later in this
paper. However, independent of its effect on the magnitude of the various
concentrations, the presence of this flux term results in a significant qualitative
change in the existence theory of the steady state solution. From the analysis
of the next section, we will see that the retention of the flux term eliminates
any restriction on the range of the synthesis rate relative to the degradation
rate as required by System R (and other ad hoc point source models in [2]).
But before we proceed with this analysis, we note that a similar development
for the IBVP for the time-dependent concentrations leads to the following
condition point source condition at X = 0:

X = 0− :
∂[L]

∂T
= σ0

DL

X 2
max

∂[L]

∂X
− kon[R][L] + koff[LR] + V̄ L (40)

or

x = 0− :
∂a

∂t
= σ0

∂a

∂x
− h0ra + f0b + v̄L . (41)

where we have approximated a(x̄, t), b(x̄, t), and r (x̄, t) for some x̄ in
(−xm, 0) by their values at x = 0−. It should be be kept in mind that the PDE
(10) requires both a(x, t) and ∂a(x , t)/∂x to be continuous at x = 0.
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4. Existence, uniqueness, and monotonicity

The existence of a steady-state solution of System R (as well as of Systems B
and C) is proved simply by identifying an upper and a lower solution for the
monotone method of Amann [14] and Sattinger [15] (see also [16]). However,
because of the form of the new boundary condition (39) at x = 0, the same
method is not directly applicable to the corresponding BVP for System A:

ā′′ − g0ā

α0 + ζ ā
= 0 (0 < x < 1), (42)

σ0ā
′(0) − g0ρ2ā(0)

α0 + ζ ā(0)
+ ν̄L = 0, ā(1) = 0, (43)

where σ 0 = Xmax/Xmin = 1/xm. On the other hand, it does provide a basis for
an existence proof for the new problem.

THEOREM 1. For positive values of the parameters σ 0, g0, α0, ζ , and ν̄L and
for ρ2 ≥ 0, there exists a regular solution ā(x) ≥ 0 of the BVP (42) and (43).

Proof : For any a0 ≥ 0, the BVP defined by (42) and the Dirichlet conditions
ā(0) = a0 and ā(1) = 0 is known to have a unique, nonnegative, monotone
decreasing (analytic) solution in 0 < x < 1 [2] with ā(x) ≡ 0 for a0 = 0. Let
s(a0) be the resulting since ā′(0) depends on a0, we set ā′(0) ≡ s(a0) to denote
this dependence. It is known from [2] that s(a0) is negative for positive a0.
Let B[a0] ≡ σ0s(a0) + ν̄L − g0ρ2a0/(α0 + ζa0). Evidently, we have B[0] > 0.
If β̄ f = β/(ρ2 − ζβ) > 0 with β = ν̄L/g0, then we can complete the proof
simply by noting B[α0β̄ f ] = σ0s(a0) < 0. Because ā′(x) and ā(x) depend
continuously on a0, we have by the intermediate value theorem that there
is a value ã0 for which B[ã0] = 0. The solution of the Dirichlet BVP with
a0 = ã0 > 0 is then a solution of the BVP (42)–(43).

The proof for the case β̄ f ≤ 0 is slightly more complicated. Let y(x ; a0) ≡
∂ ā/∂a0; it follows from the BVP for ā(x ; a0) that y(x ; a0) is the solution of
the BVP:

y′ = g0α0y

(α0 + ζ ā)2
, y(0) = 1, y(1) = 0.

Evidently, yu(x) = 1 and y
(x) = 0 are, respectively, an upper and lower
solutions of the problem above for ā(x) resulting from a0 > 0. By the
monotone method of Amann and Sattinger, there is a unique, nonnegative, and
monotone decreasing solution y(x ; a0) for this problem with y′(x ; a0) < 0. In
particular, we have y′(0; a0) = ∂[a′(0; a0)]/∂a0 < 0; hence B[a0] is decreasing
function of a0. With B[0] > 0, there exists some ã0 > 0 for which B[ã0] = 0.
Again, the solution of the Dirichlet BVP with a0 = ã0 > 0 is a solution of the
BVP (42)–(43). �
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Note that the ligand synthesis rate was restricted by β < ν̄L/g0 in [2];
otherwise we would have a0 < 0 which is biologically inadmissible. In the
proof above, the solution of our problem naturally satisfies the nonnegativity
requirement and hence imposes no restriction on the synthesis (or ν̄L/g0).

THEOREM 2. The nonnegative solution of Theorem (1) is unique.

Proof : The proof is essentially the same as that for System R (see [2]).
Suppose there are two solutions ā1(x) and ā2(x). Let a(x) = ā1 − ā2, then the
BVP for āk(x) implies

a′′ = g0ā1

ζ ā1 + α0
− g0ā2

ζ ā2 + α0
= g0α0a

(ζ ā1 + α0)(ζ ā2 + α0)
,

a(1) = 0, σ0a(0) = ρ2g0α0a(0)

(ζ ā1(0) + α0)(ζ ā2(0) + α0)
.

Multiply both sides of the differential equation above by a(x) and integrate
the resulting relation over [0, 1]. After integrating by parts and applying the
boundary conditions for a(x), we obtain

ρ2g0α0a2(0)

σ0(ζ ā1(0) + α0)(ζ ā2(0) + α0)
+

∫ 1

0
(a′)2 dx

+
∫ 1

0

ρ2g0α0a2

(ζ ā1 + α0)(ζ ā2 + α0)
dx = 0. (44)

Because ā1 ≥ 0 and ā2 ≥ 0, the condition (44) requires a(x) ≡ 0 and hence
uniqueness. �

THEOREM 3. The nonnegative solution of Theorem (1) is a monotone-
decreasing function.

Proof : Suppose there is a local maximum of ā at an interior point x0; then
we have ā′′(x0) ≤ 0. At the same time, we have from (42)

ā′′(x0) = g0ā(x0)

ζ ā(x0) + α0
≥ 0,

because morphogen concentration has already been shown to be nonnegative.
Together they require ā(x0) = 0. But ā(x) is nonnegative (and ā(x0) is a
maximum); therefore we must have ā(x) ≡ 0, which violates the boundary
condition at x = 0. Hence, ā(x) does not have an interior maximum.

The ODE (42) requires ā(x) to be continuous and smooth. It follows that the
steady-state concentration ā(x) also cannot have a local minimum ā(x0) = 0 at
an interior point x0. Otherwise, we would have ā(x) = 0 for x ≥ x0 and, by
the continuity of ā(x) and ā′(x), ā(x) ≡ 0 for 0 ≤ x ≤ x0 as well. Hence, ā(x)
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must be monotone, and, given the boundary conditions at the two ends, it must
be monotone decreasing. �

5. Steady-state solutions for special cases

5.1. No receptor synthesis in the morphogen production region

For the extreme case where there is no receptor synthesis in the morphogen
production region so that ρ2 = V̄n/V̄ p = 0 (and hence no concentration of
either occupied or unoccupied receptors in that region), the end condition (39)
simplifies to

ā′(0) = −v̄L xm, (45)

where the right-hand side is a known quantity. The two-point BVP defined
by the ODE (42) and the end conditions (43) with ρ2 = 0 determines ā(x).
The ODE is autonomous; hence the BVP can be solved exactly except
for a numerical solution of a nonlinear equation for the initial amplitude
a0 ≡ ā(0). For ζ � 1, it is straightforward to obtain the following leading
term perturbation solution in ζ for ā(x):

THEOREM 4. The leading term perturbation solution in the small parameter
ζ for ā(x) is

ā(x) ∼ v̄L xm

µ coshµ
sinh(µ(1 − x)), (46)

with

ā(0) ∼ v̄L xm

µ
tanhµ. (47)

Remark 1. The expressions (46) and (47) are identical to the corresponding
results for System F for ρ2 = 0 (see (29) and (31)). Hence, the present
aggregated source model (System A) correctly replicates the value ā(0) of the
more realistic distributed source model for this extreme case of ρ2 = 0, at
least for ζ � 1. Moreover, the ODE for the range 0 < x < 1 as well as the end
condition at x = 1 for Systems F and A are identical; it follows that the
distributions of morphogen concentrations must be the same for both models
at least for ζ � 1.

For more general values of ζ , we integrate the ODE (42) once to get

1

2

{
[ā′(x)]2 − s21

} = gr ā(x) −
(

gr

µ

)2


n

(
α0 + ζ ā(x)

α0

)
, (48)



358 A. D. Lander et al.

where we have made use of the fact that ā(1) = 0 and where s1 = ā′(1) is an
unknown constant. The boundary condition (45) is then applied to get s21 in
terms of a0 = ā(0):(

µ

gr
s1

)2

= (µβm)
2 − 2z0 + 2
n(1 + z0),

where βm = v̄L xm/gr = ζβxm, z(x) = ζ ā(x)/α0, and z0 = ζa0/α0, so that (48)
becomes

z′ = −µ

√
(µβm)2 − 2(z0 − z) + 2 ln

(
1 + z0
1 + z

)
. (49)

Given µβm , the ODE (49) and the end condition z(0) = z0 (corresponding to
ā(0) = a0) determines ā(x ; a0) with an unknown parameter a0. The condition
ā(1; a0) = 0 then fixes a0 (in terms of the known parameter µβm = µζβxm).
The dependence of a0 on β = v̄L/g0, a critical amplitude parameter in point
source models (see [2, 8]), for a typical set of other biological parameter
values is illustrated in column 2 of Table 1 below. The corresponding values of
a0 by the approximate solution (45) are also given in column 4 there. It is seen
from the results in that table that the leading-term perturbation solution for
a0 is very accurate for β ≤ 1 and is still within 10% of the accurate (to
10−5) numerical solution for β ≤ 5 (with ζ = 0.2 and ζβ = 1 for the set
of parameter values used for these results). More significantly, the accurate
numerical solutions in Table 1 agree with the corresponding solutions for
Systems F in ([1]) at least to three significant figures for ρ2 = 0.

5.2. Perturbation solutions for small ζ

For ρ2 > 0 but ζ � 1 (corresponding to kdeg � kg and g0 � gr), we may seek
an appropriate parametric expansion of the solution in the parameter ζ . For

Table 1
a0 = ā(0) vs. β = v̄L/g0(g0 = 0.2, gr = 1.0, h0 = 10, f0 = 0.001, xm = 0.1)

a0 a0|Xmax=∞ a0|ζ=0 a0|ζ=0 a0|Xmax=∞ a0

β (ρ2 = 0) (ρ2 = 0) (ρ2 = 0) (ρ2 = 1) (ρ2 = 1) (ρ2 = 1)

0.25 0.001588 0.001593 0.001579 0.001202 0.001212 0.001209
0.50 0.003191 0.003204 0.003159 0.002403 0.002439 0.002432
1.00 0.006448 0.006474 0.006317 0.004807 0.004935 0.004920
5.00 0.034913 0.035119 0.031587 0.024033 0.027082 0.026965

10.00 0.076665 0.077381 0.063173 0.048066 0.060314 0.060209
25.00 0.243073 0.250764 0.157933 0.120165 0.205606 0.200968
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a moderate morphogen production rate v̄0 ≡ v̄L xm so that ζ ā(x) � α0, it is
appropriate to take

ā(x ; ζ ) =
∞∑

k=0

ak(x)ζ
k .

The leading-term solution is determined by the linear BVP:

a′′
0 − µ2a0 = 0, µ2 = g0

α0
= ψ

subject to the boundary conditions

σ0ā
′
0(0) − µ2ρ2a0(0) + v̄L = 0, a0(1) = 0.

It is straightforward to obtain the exact solution of this linear BVP.

THEOREM 5. For ζ � 1, a leading-term perturbation solution for ā(x) in ζ

is given by

a0(x) = ν̄L

µ2

sinh(µ(1 − x))

sinh(µ)
[
ρ2 + σ0

µ
coth(µ)

]
= βα0 sinh(µ(1 − x))

sinh(µ)
[
ρ2 + σ0

µ
coth(µ)

] , β = v̄L/g0. (50)

Remark 2. For relatively high binding rate, the parameter µ2 = g0h0/

( f 0 + g0) is generally large compared to 1. Hence, if σ 0 = 1/xm is O(1) or
smaller, the contribution from the flux term is negligible. This observation
provided the motivation for the omission of the flux term in System R (as well
as Systems B and C in [2, 8]). The omission of the flux term is attractive as
it leads to simpler theoretical and computational treatments of the problem.
However, with the aggregated source model (System A) derived from System F,
the flux coefficient σ 0 is now seen to be Xmax/Xmin = 1/xm which may well
be 
1 (and is typically the case for a Drosophila wing disc). Unless µ is
sufficiently large so that σ 0/µ = (µxm)−1 is negligibly small, the contribution
of the flux term generally cannot be omitted. For the typical set of parameter
values for the Drosophila wing disc used in Table 1, we have µxm � 0.32 so
that the condition for omitting the flux term is not satisfied. With the flux term,
results given in the fifth column of Table 1 for ρ2 = 1 show that the leading
term perturbation solution is very accurate for β < 5 and has only about a
12% error for β = 5 relative to the accurate numerical solution of column 7.

For the extreme case of xm = Xmin/Xmax → 0, care must be taken so
that there is a finite amount of ligand in the system. This is done by leaving
v̄L xm = v0 fixed and finite as xm → 0. In that case, we have
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a0(0) = v0

µ2
[
ρ2xm + 1

µ
coth(µ)

] → v0

µ
tanh(µ), (51)

which is in agreement with (32). Thus for ζ � 1, the aggregated source model
(System A) replicates the characteristics features of System F for ρ2 > 0 as well.

5.3. Approximate solution for high ligand synthesis rates

With all biological parameters other than v̄L fixed, it is expected that the
maximum steady-state free ligand concentration would increase with v̄L . Let
ā(x) = v̄L xm A(x) and write the BVP for ā(x) in terms of A(x):

A′′ − 1

βm

A

ε + A
= 0, ε = grα0

g0v̄L xm
= 1

ζβxmµ2
= 1

βmµ2

A(1) = 0, A′(0) − ρ2xm

βm

A(0)

ε + A(0)
+ 1 = 0.

For a sufficiently high ligand synthesis rate v̄L so that ε � 1, we may seek a
perturbation solution of A(x) in ε with its leading term determined by

A′′
0 = 1

βm
, A′

0(0) − ρ2xm

βm
+ 1 = 0, A0(1) = 0.

The condition ε � 1 requires βm = ζβxm = v̄L xm/gr 
 1/µ2; it is certainly
satisfied by v̄L xm/gr ≤ 1 since µ2 = g0/α0 = O(h0) is the effective normalized
binding rate and is usually large compared to unity. The factor xm is often small
(as in a Drosophila wing disc) so that the second term of the end condition at
x = 0 may be omitted sometimes; however, we retain the term here to allow
for moderate values of xm.

THEOREM 6: For ε � 1, we have the following leading-term perturbation
solution in ε

ā(x) ∼ v̄L xm

{(
1 − ρ2gr

v̄L

)
(1 − x) − gr

2v̄L xm
(1 − x2)

}
(52)

with

a0 = ā(0) ∼ v̄L xm

(
1 − ρ2gr

v̄L
− gr

2v̄L xm

)
. (53)

Remark 3. For very large values of v̄L , we may further simplifiy the above
result to get

ā(0) ∼ v̄L xm and ā′(0) ∼ −v̄L xm .

The asymptotic behavior of ā(0) and ā′(0) is therefore identical to that of
System F given in (34) [1]. As such, the aggregated source model (System A)
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Table 2
Asymptotic vs. Numerical Solution for High Ligand Synthesis Rates

(g0 = 0.2, gr = 1.0, h0 = 10, f 0 = 0.001, xm = 0.1)

a0 a0 (53) a0 a0 (53)
v̄L β ε (ρ2 = 1) (ρ2 = 1) (ρ2 = 0) (ρ2 = 0)

10 50 0.10050 0.5568 0.4000 0.6287 0.5000
20 100 0.05025 1.4683 1.4000 1.5586 1.5000
40 200 0.02513 3.4306 3.4000 3.5271 3.5000
80 400 0.01256 7.4145 7.4000 7.5130 7.5000
160 800 0.00628 15.4071 15.4000 15.5064 15.5000

reproduces the behavior of the distributed source model (System F) for the
higher range of morphogen production rate as well. At the same time, the
results of this section indicate that the flux term in the end condition at x =
0 is indispensable in obtaining the correct asymptotic behavior for high v̄L

beyond the limit βr = v̄L/gr < 1 imposed by the ad hoc point source model
System R on the existence of steady-state concentrations.

With g0 = 0.2, gr = 1.0, h0 = 10, f 0 = 0.001, and xm = 0.1, we compare
in Table 2 the approximate solution in (53) for a range of v̄L values with
the corresponding accurate numerical solution. We see from the results that
the asymptotic solutions are accurate to within 5% for v̄L = 20 (with β =
100 and ε = 0.05025) and with negligible relative error for larger v̄L . The
range of β(=v̄L/g0) values is significant in that we have not only β 
 1
but also ζβ = v̄L/gr > 1 in all cases, confirming the existence of stable state
concentration gradients for values of β well beyond the restricted range of
β = v0/g0 < 1 required by System R in [2].

5.4. Approximate solutions for large Xmax

In this subsection, we consider the solution for the limiting case of Xmax = ∞
with ā(x) → 0 and ā′(x) → 0 as x → ∞. (Note that x is now X normalized
by some reference length X0.) For example, we may take X0 = Xmin, the
width of the ligand production zone. The approximation is expected to be
appropriate for the case of a very large Xmax, say Xmax 
 Xmin. For this
limiting case, the governing ODE (23) can be integrated once to give

1

2
[ā′(x)]2 = gr ā(x) −

(
gr

µ

)2


n

(
α0 + ζ ā(x)

α0

)
, (54)

where µ2 is as previously defined in (27) and where we have made use of the
conditions that ā(x) → 0 and ā′(x) → 0 as x → ∞. At x = 0, we have from (54)
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1

2
[ā′(0)]2 = gr a0 −

(
gr

µ

)2


n

(
α0 + ζa0

α0

)
, (55)

where a0 = ā(0) is still to be determined. In the relation (55), ā′(0) can be
expressed in terms of a0 by way of (39) to give v̄L xm/gr = βm as a function of
z0 = ζa0/α0 with µ and ρ2

m ≡ ρ2xm as parameters:

βm = ρ2xmz0
1 + z0

+
√
2

µ

√
z0 − ln (1 + z0). (56)

For a given positive value of βm , it is not difficult to show that the relation (56)
determines a unique positive solution for the unknown z0.

For ρ2 = 0, the relation (56) reduces to
µ√
2
βm =

√
z0 − ln (1 + z0). (57)

The quantity µβm/
√
2(=µν̄L xm/

√
2gr = µζ xmβ/

√
2) defined by (57) is a

monotone increasing, concave function of nonnegative z0. Hence, there is a
unique solution for the BVP for ā(x),

z′ = −
√
2µ

√
z − ln (1 + z), z(0) = z0, (58)

as assured by the existence theorem. Note that in terms of the biological
parameters, the quantity µβm is independent of the choice of X0. Values of
a0 for different values of β = ν̄L/g0 are given in column 3 of Table 1 for
the previously selected set of other biological parameter values relevant to
Drosophila wing imaginal discs. The agreement with the corresponding exact
numerical solution in column 2 is to a relative error of less than half of a
percent for the range of ν̄L calculated. It is important to observe that the
solution of the initial value problem (58) is of the form z = Z (ξ ; z0(µβm)) (so
that ā(x) = α0Z (ξ ; z0(µβm))/ζ ), with ξ = µx and z0(µβm) being the unique
positive solution of (57). Hence, we know all about the structure of the solution
in this limiting case without solving any differential equation.

Graphs of ν̄L xm/gr (=βm) versus ζa0/α0 = z0 for different values of the
parameter µ are given in Figure 1 for the other extreme case of ρ2 = 1 with
xm = 0.1. Similar to (57), the quantities µβm and µxm in (56) do not vary with
the choice of X0. The monotone increasing graphs of βm in Figure 1 ensure
that a positive root z0 = ζa0/α0 is uniquely determined by a prescribed value
of ν̄L (with β = ν̄L/g0 and ν̄L/gr = ζβ). Having the unique positive solution
z0 of (56), the ODE (58) can be integrated exactly to give ā(x). With g0 = 0.2,
gr = 1.0, h0 = 10, f 0 = 0.001, and xm = 0.1, we obtain in column 6 of
Table 1 the values of a0 for a range of values of β = ν̄L/g0 and ρ2 = 1. These
values are in excellent agreement with the corresponding accurate numerical
solution in column 7 (as well as the relevant numerical results for System F
reported in [1]). Together, results for the two extreme values of ρ2 suggest
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Figure 1. Normalized steady-state end free ligand concentration z0 versus synthesis-to-
degradation rate ratio βm(ρ2 = 1 and xm = 0.1).

that the limiting case of Xmax = ∞ is a useful simplification and adequate
approximation for problems with Xmax 
 Xmin.

6. Linear stability analysis

6.1. A nonlinear eigenvalue problem

The stability of the steady-state solution of the aggregated source problem
with respect to a small perturbation can also be examined by considering a
time-dependent solution of the form

{a(x, t), b(x, t), r (x, t)} = {ā(x), b̄(x), r̄ (x)} + e−λt{â(x), b̂(x), r̂ (x)}, (59)

and linearizing the governing PDE and boundary conditions (10)–(12) to
obtain the following eigenvalue problem for {â(x), b̂(x), r̂ (x)} with λ as the
eigenvalue parameter:

−λâ = â′′ − h0(r̄ â + ār̂ ) + f0b̂ (60)

−λb̂ = h0(r̄ â + ār̂ ) − ( f0 + g0)b̂ (61)
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−λr̂ = −h0(r̄ â + ār̂ ) − gr r̂ + f0b̂. (62)

â′(−xm) = 0, â(1) = 0. (63)

The relations (61) and (62) are solved for b̂ and r̂ in terms of â making use of
(21) to get

r̂ = h0(λ − g0)r̄ (x)â

(gr − λ)( f0 + g0 − λ) + h0ā(x)(g0 − λ)
(64)

b̂ = h0(gr − λ)r̄ (x)â

(gr − λ)( f0 + g0 − λ) + h0ā(x)(g0 − λ)
. (65)

The expressions (64) and (65) are then used to eliminate b̂ and r̂ from (60) to
obtain

â′′ + [λ − qr (x ; λ)] â = 0 (0 < x < 1), (66)

with

qr (x ; λ) = 1

1 + ζ β̄0A(x)

h0(gr − λ)(g0 − λ)

(gr − λ)(g0 + f0 − λ) + (g0 + f0)(g0 − λ)β̄0A(x)

≡ 1

1 + ζ β̄0A(x)

Nr (x ; λ)

Dr (x ; λ)
, (67)

where we have set

ā(x) = α0β̄0A(x), with A(0) = 1 (68)

so that ā(0) = α0β̄0. Note that β̄0 is known to be positive from the solution of
the steady-state problem. Let

β0 = β̄0

1 + ζ β̄0
; (69)

then β0 = b̄(0+) is positive. (In contrast to Systems B, C, and R, there is no
restriction on β0 or the rate of morphogen synthesis in the present aggregated
source model System A.)

The boundary conditions for the ODE (66) are

σ0â
′(0) + λâ(0) − (g0 − λ)b̂(0−) = 0, â(1) = 0 (70a)

with b̂(0−) expressed in terms of â(0) and ā(0) by (65) and (21) with
r0(0−) = ρ2. The first end condition of (70a) is a consequence of (41) and
(37) while the second follows from a(1, t) = ā(1) = 0. We now rewrite these
end conditions in terms of â(x) alone to obtain

σ0â
′(0) + [λ − qρ(λ)]â(0) = 0, â(1) = 0, (71)
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where

qρ(λ) = ρ2

1 + ζ β̄0

h0(gr − λ)(g0 − λ)

(gr − λ)(g0 + f0 − λ) + h0ā(0)(g0 − λ)
≡ ρ2

1 + ζ β̄0

Nm(λ)

Dm(λ)
.

(72)

Together, (66) and (71) define an eigenvalue problem with λ as the eigenvalue
parameter. Though the ODE is linear in the unknown â(x), the eigenvalue
problem is nonlinear since λ appears nonlinearly in qr(x ; λ) and qρ(λ) so that
(66) and (71) is not a Sturm–Liouville problem.

6.2. Positive eigenvalues and asymptotic stability

In this subsection, we will show that the eigenvalues of the homogeneous
boundary value problem (66) and (71) for â(x) must be positive. It follows then
that the steady-state gradients are asymptotically stable according to linear
stability theory.

LEMMA 1. All the eigenvalues of the nonlinear eigenvalue problem (66) and
(71) are real.

Proof : Suppose λ is a complex eigenvalue and aλ(x) an associated nontrivial
eigenfunction, then λ∗ is also an eigenvalue with eigenfunction a∗

λ(x), where
( )∗ is the complex conjugate of ( ). The bilinear relation

∫ 1

0

[(
a∗

λ

)
a′′

λ − (
a∗

λ

)′′
aλ

]
dx = |aλ(0)|2

σ0

[
(λ − λ∗) − {

qρ(λ) − qρ(λ
∗)

}]
,

(which can be established by integration by parts and applications of the
boundary conditions in (71)) requires

0 =
∫ 1

0

{
(λ − λ∗) − [

qr (x ; λ) − qr (x ; λ
∗)

]} (
a∗

λaλ

)
dx

+ |aλ(0)|2
σ0

[
(λ − λ∗) − ρ2

1 + ζ β̄0

{
Nm(λ)

Dm(λ)
− Nm(λ∗)

Dm(λ∗)

}]
, (73)

where we have made use of the boundary conditions (71). It is straightforward
to verify

qρ(λ) − qρ(λ∗) = −(λ − λ∗)
ρ2h0{ f0Q(gr , λ) + β̄0(g0 + f0)Q(g0, λ)}

(1 + ζ β̄0)Dm(λ)Dm(λ∗)

≡ −(λ − λ∗)�m(λ, λ∗)
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with

Q(y, λ) = [y − Re(λ)]2 + [Im(λ)]2,

being a positive quantity for any λ so that �m(λλ∗) > 0. Similarly, we have
qr(x ; λ) − qr(x ; λ∗) = −(λ − λ∗)� (x ; λ, λ∗) where

�(x ; λλ∗) = h0{ f0Q(gr , λ) + (g0 + f0)β̄0A(x)Q(g0, λ)}
(1 + ζ β̄0A(x))Dr (x ; λ)Dr (x ; λ∗)

> 0.

In that case, the condition (73) becomes

−(λ − λ∗)
{∫ 1

0
aλa∗

λ[1 + �(x ; λ, λ∗)] dx + 1

σ0

[
1 + �m(λ, λ∗)

] |aλ(0)|2
}

= 0.

Because the integral is positive for any nontrivial function aλ(x ; λ), we must
have λ − λ∗ = 0. Hence, λ does not have an imaginary part. �

THEOREM 7. All eigenvalues of the nonlinear eigenvalue problem (60)–(62)
and (71) are positive and the steady-state concentrations ā(x), b̄(x), and r̄ (x)
are asymptotically stable by a linear stability analysis.

Proof : Suppose λ ≤ 0. Let âλ(x) be a nontrivial eigenfunction of the
homogeneous BVP (66) and (71) for the nonpositive eigenvalue λ. Multiply
(66) by âλ and integrate over the solution domain to get∫ 1

0

{
âλâ′′

λ − qr (x ; λ)(âλ)
2
}

dx = −λ

∫ 1

0
(âλ)

2 dx .

After integration by parts and applications of the homogeneous boundary
conditions (71), we obtain

λ

∫ 1

0
(âλ)

2 dx =
∫ 1

0
(â′

λ)
2 dx +

∫ 1

0
qr (x ; λ)(âλ)

2 dx − 1

σ0
(âλ(0))

2
[
λ − qρ(λ)

]
.

(74)

Because λ is not positive, we can write λ = −|λ| ≤ 0 so that

qr (x ;−|λ|) = 1

1 + ζ β̄0A(x)

h0(g0 + |λ|)(gr + |λ|)
(gr + |λ|)(g0 + f0 + |λ|) + h0ā(x)(g0 + |λ|) > 0,

qρ(−|λ|) = ρ2

1 + ζ β̄0

h0(gr + |λ|)(g0 + |λ|)
(gr + |λ|)(g0 + f0 + |λ|) + (g0 + f0)β̄0(g0 + |λ|) > 0.

For any nontrivial solution of the eigenvalue problem under the assumption
λ ≤ 0, the right-hand side of (74) is positive which contradicts the assumption
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λ = −|λ| ≤ 0 (since the left-hand side of (74) is nonpositive for a non-
positive λ). Hence, the eigenvalues of the eigenvalue problem (66) and (71)
must be positive and the theorem is proved. �

7. Decay rate of transients

Although knowing the eigenvalues being positive is sufficient to ensure the
(linear) asymptotic stability of the steady-state morphogen concentration
gradients, we want to know the smallest eigenvalue (or an estimate of it) to get
some idea of how quickly the system returns to a steady state after small
perturbations. As parametric studies require that we repeatedly compute the
time evolution of the concentration of both free and bound morphogens from
their initial conditions, the value of the smallest eigenvalue will also give us
some idea of the decay rate of the transient behavior and thereby the time to
reach a steady state.

The eigenvalue problem (66)–(71) whose solution is needed for the
determination of decay rate of transients is nonlinear and the steady-state
free Dpp concentration ā(x) that appears in the coefficient qr(x ; λ) of (66)
is only known numerically in general. Hence, the smallest eigenvalue of
(66)–(71), denoted by λs , generally can only be found by numerical methods.
Accurate numerical solutions for the nonlinear eigenvalue problem is possible
but tedious. In the subsections below, we will obtain (1) an explicit analytical
solution for the case when the morphogen synthesis rate is relatively low, and
(2) some tight upper and lower bounds for λs which would provide a good
estimate of its actual value.

7.1. Approximate decay rates

We learned from (69) β0 = b̄(0+) is a normalized amplitude factor for the
bound ligand concentration, which is expected to be a decreasing function of
the normalized synthesis rate ν̄L . For sufficiently small ν̄L , we should have
β̄0 � 1. In that case, a perturbation solution for λ and â(x) may be obtained as
parametric series in β̄0:

{â(x), λ} ≡
∞∑

n=0

{an(x), λn}β̄n
0 . (75)

The leading-term solution is determined by the simpler linear eigenvalue
problem

a′′
0 + [λ0 − qr0(λ0)]a0 = 0 (0 < x < 1), (76)

σ0a
′
0(0) + [λ0 − qρ0(λ0)]a0(0) = 0, a0(1) = 0, (77)
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with

qr0(λ0) = h0(g0 − λ0)

g0 + f0 − λ0
= 1

ρ2
qρ0(λ0). (78)

Note that the leading term of the parametric series for qr(x ; λ) does not depend
on x. The exact solution for the eigenvalue problem (76) and (77) is

a0(x) = c0 sin(η(1 − x)), η2 = λ0 − h0(g0 − λ0)

g0 + f0 − λ0
, (79)

and λ0 is a root of

σ0η =
[
λ0 − ρ2h0(g0 − λ0)

g0 + f0 − λ0

]
tan(η). (80)

The slowest decay rate of the transients is given (approximately) by the smallest
positive λ0, denoted by λ

(0)
0 , that satisfies (80) with η given in terms λ0 by

(79). The following two observations are helpful for further developments:

Remark 4. Though η = 0 also satisfies (80), it is not an admissible solution
for the eigenvalue problem because it leads to a trivial solution for a0(x).

Remark 5. From the second equation of (79), we get{
1 + h0 f0

(g0 + f0 − λ0)2

}
dλ0

d(η2)
= 1

so that λ0 is an increasing function of η2.

For ρ2 = 1, (80) may be written as

σ0 = η tan(η). (81)

It follows that λ
(0)
0 is the smaller of the two roots of

λ0 − h0(g0 − λ0)

g0 + f0 − λ0
= η2

s ,

for the smallest ηs that satisfies (80) with ηs ≤ π/2. We are interested here for
xm � 1 (so that σ 0 
 1). In that case, we have ηs � π/2 to a good first
approximation and therewith

λ2
0 − (

g0 + f0 + h0 + π2/4
)
λ0 + [(

h0 + π2/4
)
g0 + f0π

2/4
] = 0,

which is identical to the corresponding result of System F for a spatially
distributed source and does not depend on the (normalized) ligand synthesis
rate ν̄L (see [1]). For g0 = 0.2, f 0 = 0.001, and h0 = 10, the solution of the
quadratic equation above gives λ

(0)
0 = 0.2001848. For f 0 = 0.01 and f 0 = 0.05,

the corresponding values for λ
(0)
0 are 0.2001847 and 0.2092109, respectively.
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For sufficiently high synthesis rate so that ζ β̄0 
 1, both qρ and qr are
O((ζ β̄0)−1). A leading-term perturbation solution in 1/(ζ β̄0) also gives (81)
for the determination of the (leading-term) eigenvalues but now with η ∼ √

λ.
Hence, the present aggregated source model, System A, correctly reproduces
another characteristic feature, the decay rate of transients, of the distributed
source model System F for both low and high ligand synthesis rates.

The accuracy of these leading asymptotic solutions can be improved by
obtaining higher-order correction terms in the relevant parametric series.
Instead of doing that, we will obtain an upper bound and a lower bound for the
smallest eigenvalue λs of the eigenvalue problem (66) and (71). It will be seen
from these bounds and the numerical results for the three special cases how
accurate the leading-term perturbation solution can be. For this purpose, we
observe the following facts for sufficiently small ν̄L :

(1) η2(λ0 = g0) = g0 with g0 < π2/4 ≈ η2
s for Drosophila wing disc problems,

(2) η2(λ0) has a simple pole at g0 + f 0, and
(3) η2(λ0) is an increasing function of λ0 for λ0 < g0 + f 0.

With g0 < η2
s (�π2/4) for the particular set of parameter values considered

above, it follows from the three observations above g0 < λ
(0)
0 < g0 + f 0.

This conclusion is consistent with the approximate solutions for λ
(0)
0 obtained

above. For the three set of parameter values considered for actual solutions
above, the upper and lower bounds narrowly delimit λ

(0)
0 with 0.2 < λ

(0)
0 <

0.201 for the first case. In the next section, this method for finding bounds will
be modified and applied to a broader range of values of ν̄L for which the
perturbation method may not apply.

7.2. Bounds on the decay rate of transients

Recall that λs is the smallest eigenvalue of the (66) and (71). Let

�(λ) = [λ − qρ(λ)], (82)

and

�s = λs − ρ2

1 + ζ β̄0

h0(gr − λs)(g0 − λs)

(gr − λs)(g0 + f0 − λs) + β̄0(g0 + f0)(g0 − λs)
≡ �(λs).

(83)

The function �(λ) has two simple poles which are the two roots of the
quadratic equation

Dm(λ) ≡ (gr − λ)(g0 + f0 − λ) + β̄0(g0 + f0)(g0 − λ) = 0.
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Let λc be the smaller of the two poles:

λc = 1

2

{
γ −

√
γ 2 − 4(gr + β̄0g0)(g0 + f0)

}
, γ = (1 + β̄0)(g0 + f0) + gr .

It is straightforward to prove the following key lemma:

LEMMA 2. �(λ) as given by (83) is a monotone-increasing function of λ in
0 ≤ λ < λc where λc is the smallest root of Dm(λ) (or the smallest simple pole
of �(λ)) with (i) gr < λc < g0 if gr < g0, or (ii) g0 < λc < min{g0 + f 0, gr)
if gr > g0.

Proof : We compute d�/dλ to obtain

d�

dλ
= 1 + h0ρ

2Z (λ)

(1 + ζ β̄0)[Dm(λ)]2
, (84)

with

Z (λ) = β̄0(g0 + f0)(λ − g0)
2 + f0(λ − gr )

2 (85)

showing that d�/dλ is positive because all the parameters involved are
nonnegative. The inequalities on λc asserted by the lemma are immediate
consequences of the form of the quadratic function Dm(λ). �

We know �(λ) = �s has a solution in [0, ∞) because �(λs) = �s and λs

being an eigenvalue of (66) and (71) must be positive. Our goal is to find λs or
some bounds for it. We cannot simply solve �(λ) = �s for λs because we do
not know �s (which was defined in terms of the unknown λs by (83)). But we
can now narrow down the range of λs with the help of Lemma 2.

THEOREM 8: �(λ) = �s has only one root in (0, λc).

Proof : Because �(0) < 0 and �(λ) ↑ ∞ as λ ↑ λc, there is only one root
of �(λ) = �s in (0, λc). It must be λs with 0 < λs < λc because λs is the
smallest eigenvalue and it is positive. �

Theorem 8 above settles the existence and uniqueness of a positive λs . With
the help of Lemma 2, we can obtain the following useful bounds for λs for the
case of min{g0, gr} < �s most relevant to the Dpp gradient in the Drosophila
wing disc.

COROLLARY 1. If min{g0, gr} < �s , we have λs > min{g0, gr} and hence
min{g0, gr} < λs < λc.
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Proof : The upper bound on λs is already known from Theorem 8. The
lower bound is a direct consequence of Lemma 2 given �(0) < 0 and 0 <

�(gk) = gk < �s , with gk being g0 or gr, whichever is smaller. �

Remark 6. Though we do not know �s a priori, we have from the
perturbation solution �s � π2/4 for sufficiently small xm and ν̄L . For Dpp in
the wing imaginal disc of Drosophilas, we have g0 < g0 + f 0 < gr < π2/4. It
follows from Corollary 1 g0 < λs < λc < g0 + f 0 which gives a sharp upper
and lower bound on the decay rate of transients. With f0 � g0 in some cases,
the smallest eigenvalue is again limited to a very narrow range of values as
illustrated by the approximate solutions for three sets of parameter values in the
previous subsection. We summarize this observation in the following corollary:

COROLLARY 2. If g0 + f 0 ≤ min{gr, �s}, we have λ
 ≡ g0 < λs < λc <

g0 + f 0 ≡ λu . If on the other hand gr ≤ min{g0, �s}, then we have λ
 ≡
gr < λs < λc < g0 ≡ λu .

In the complementary range (�(0) < 0 <) �s < min{gr · g0}, we have the
following corollary of Theorem 8:

COROLLARY 3. For �s < min{g0, gr}, we have λ
 ≡ �s < λs < λc <

max{g0, min(g0 + f 0, gr)} ≡ λu .

Proof : The lower bound is a consequence of �(�s) < �s and Lemma 2.
The upper bound follows from the bounds on λc in same lemma. �

Remark 7. The upper and lower bounds established above for System A are
identical to the correspond bounds obtained for System F in [1]. Hence, the
decay rates of the two systems are bounded by the same sharp bounds and
therefore should be in close agreement (as confirmed by accurate numerical
solutions). It is another indication that the aggregated source model developed
herein successfully replicates the essential features of corresponding distributed
source model. The simpler System A has the additional advantage that the
sharper upper bound λc is known explicitly.

8. Conclusion

A system of partial differential equations and auxiliary conditions is formulated
as System F in [1] for modeling the extracellular Dpp activities in Drosophila
wing imaginal discs. It is analogous to System R of [2] but now allows for
distributed morphogen production in a finite region between the (anterior and
posterior) chambers of wing discs. In contrast to System R (and other ad hoc
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point source models formulated and analyzed previously [2] and [8]), this
new and more realistic model of the wing disc exhibits one new biologically
significant feature: there is no restriction on the ligand synthesis rate for the
existence of steady-state behavior. As concentrated end source model is more
attractive for theoretical analysis and numerical simulations, we derived in this
paper an appropriate end source model consistent with System F by aggregating
the morphogen activities in the region where morphogens are synthesized. With
some well-defined and biologically reasonable approximations, we deduced
from System F an aggregated source model (designated as System A) that is
seen to capture the principal features of System F and at the same time reduce
to the corresponding ad hoc point source model System R under suitable
circumstances.

The new System A has been shown to replicate the following essential
features of System F when Xmin � Xmax (which is the case for Dpp in a
Drosophia wing disc):

1. It poses no limitation on the morphogen synthesis rate for the existence of
a unique set of monotone decreasing and asymptotically stable steady-state
free and bound ligand concentration gradients in the (posterior) chamber
region of the wing disc.

2. It has the same analytical expression for the asymptotic steady-state free
and bound ligand concentration gradients in the wing disc chamber for
both low (ζβ � 1) and high (ζβ 
 σ 0) morphogen synthesis rates.

3. Numerical solutions for ligand synthesis rate are not covered by asymptotic
solutions above are in good agreement with the corresponding results for
System F.

4. It has the same leading-term perturbation solution for the decay rate of
transient behavior for low and high ligand synthesis rates.

5. It shares the same relevant sharp upper and lower bounds on the decay rate
for all synthesis rates.

As such, we may use a System A type model for investigating morphogen
concentration gradients particularly when the morphogen synthesis region is
narrow compared to the span of the region without morphogen production. As
long as Xmin/Xmax � 1, numerical results of Subsection 5.4 suggest that we
may further simplify the solution process by taking Xmax = ∞.

Having the aggregate source model, we can now see the factors responsible
for the important qualitative difference between System F and the corresponding
ad hoc point source model System R regarding the restriction on the morphogen
synthesis rate for the existence of steady-state behavior. One essential difference
between System A and System R is the presence of a flux term in the end
condition at X = 0 (see (39) for the steady-state BVP and (41) for the IBVP)
with a coefficient determined in terms of the parameters that appear in the
model. Knowing this coefficient allows us to assess the significance of the
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contribution from this previously omitted flux term. From (50) and (51), we
can see that in the case ζβ = ζ ν̄L/g0 = ν̄L/gr � 1, we need

σ0

µ
= Xmax

Xmin

√
g0 + f0

h0g0
=

√
D/X 2

min

konR0

√
kdeg + koff

kdeg
� 1

for the contribution of the flux term to the amplitude of the various morphogen
gradients to be negligible. Thus System R may be used (instead of System A) if
the binding rate constant konR0 is sufficiently large compared to the diffusion
rate D/X2

min, at least for ζβ = ν̄L/gr � 1. However, no matter how small
the ratio σ 0/µ may be, its presence appears to have been responsible for the
removal of the restriction on the morphogen production rate vL.

To the extent that ad hoc point source models without an end flux term are
more tractable analytically and computationally, System A type models may
be (and has been) used instead of System F type distributed source models
when σ 0 � µ. Results of this paper show that it is generally prudent to
include the flux term in the boundary condition (39) and (40) at the source
end to allow for a broad range of ligand synthesis rate and effective binding
rate of ligand with receptor. An aggregated source type model has been
used in [3] to investigate morphogen gradient formation allowing for binding
with nondiffusive nonreceptor sites such as HSPC proteoglygans. The results
obtained there provide an explanation for the apparent inconsistency between
the experimental results of [11] and [12].
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