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Primer

Mathematical modeling of the processes that 
pattern embryonic development (often called 
biological pattern formation) has a long and rich 

history [1,2]. These models proposed sets of hypothetical 
interactions, which, upon analysis, were shown to be 
capable of generating patterns reminiscent of those 
seen in the biological world, such as stripes, spots, or 
graded properties. Pattern formation models typically 
demonstrated the sufficiency of given classes of mechanisms 
to create patterns that mimicked a particular biological 
pattern or interaction. In the best cases, the models were 
able to make testable predictions [3], permitting them 
to be experimentally challenged, to be revised, and to 
stimulate yet more experimental tests (see review in [4]). 
In many other cases, however, the impact of the modeling 
efforts was mitigated by limitations in computer power 
and biochemical data. In addition, perhaps the most 
limiting factor was the mindset of many modelers, using 
Occam’s razor arguments to make the proposed models 
as simple as possible, which often generated intriguing 
patterns, but those patterns lacked the robustness exhibited 
by the biological system. In hindsight, one could argue 
that a greater attention to engineering principles would 
have focused attention on these shortcomings, including 
potential failure modes, and would have led to more 
complex, but more robust, models. Thus, despite a few 
successful cases in which modeling and experimentation 
worked in concert, modeling fell out of vogue as a means to 
motivate decisive test experiments. 

The recent explosion of molecular genetic, genomic, and 
proteomic data—as well as of quantitative imaging studies 
of biological tissues—has changed matters dramatically, 
replacing a previous dearth of molecular details with a 
wealth of data that are difficult to fully comprehend. This 
flood of new data has been accompanied by a new influx 
of physical scientists into biology, including engineers, 
physicists, and applied mathematicians [5–7]. These 
individuals bring with them the mindset, methodologies, 
and mathematical toolboxes common to their own fields, 
which are proving to be appropriate for analysis of biological 
systems. However, due to inherent complexity, biological 
systems seem to be like nothing previously encountered in 
the physical sciences. Thus, biological systems offer cutting 
edge problems for most scientific and engineering-related 
disciplines. It is therefore no wonder that there might 
seem to be a “bandwagon” of new biology-related research 
programs in departments that have traditionally focused on 
nonliving systems. 

Modeling biological interactions as dynamical systems (i.e., 
systems of variables changing in time) allows investigation 
of systems-level topics such as the robustness of patterning 
mechanisms, the role of feedback, and the self-regulation 
of size. The use of tools from engineering and applied 
mathematics, such as sensitivity analysis and control theory, 
is becoming more commonplace in biology. In addition 
to giving biologists some new terminology for describing 
their systems, such analyses are extremely useful in pointing 
to missing data and in testing the validity of a proposed 
mechanism. A paper in this issue of PLoS Biology clearly and 
honestly applies analytical tools to the authors’ research 
and obtains insights that would have been difficult if not 
impossible by other means [8]. 

Dynamical Systems

Many dynamical systems can be sufficiently described by a set 
of ordinary differential equations (ODEs), which model how 
the variables change in time (but not space). A variable, such 
as enzyme concentration, could be affected by three factors: 
rates of production, degradation/reaction, and influx/efflux. 
Adding these influences together will tell us how that variable 
evolves.

Consider a simple example of an enzyme with intracellular 
concentration, c, and which is produced at a rate rp(c) 
and degraded or diminished at a rate rd(c). Assuming the 
concentration is uniform within the cell (a poor, yet common 
assumption), we can write an ODE describing how the 
enzyme concentration will evolve:

The first step in analysis is to determine the steady-state 
solution (the enzyme concentration that allows for the 
balance between the rates of production and degradation; 
see example in Figure 1). This is achieved by setting dc/dt = 0 
(implying that concentration no longer changes in time) and 
solving the remaining algebraic equation.
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dc  = rp(c) - rd(c)
dt
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To make the example concrete, consider the case in which 
the enzyme concentration promotes its own production 
(Figure 1A) [9]:

where V is the maximal production rate and Km is analogous 
to a Michaelis-Menten constant, and assume enzyme 
concentration is diminished in a first-order process (see 
Figure 1B). This removal rate is usually due to a combination 
of enzyme turnover and a dilution effect due to cell growth. 
In this case, we can solve the steady state equation, finding c = 
V/μ + Km, where μ is the decay rate constant. This can be seen 
graphically in Figure 1C, where the steady-state value of c lies 
at the intersection between rp(c) and rd(c). After calculating 
the steady state, a sensitivity analysis is often performed to 
determine the robustness of the solution to variations in 
parameter values.

Sensitivity Analysis

In recent years, much research has focused on the robustness 
of biological systems [10,11]. Indeed, it is clear that biological 
systems must maintain several variables within a narrow limit 
in the face of a wide variety of external pressures.

In applied sciences, “sensitivity” (the opposite of 
robustness) is measured by a quantity called the sensitivity 
coefficient. This quantity measures the amount by which 
an output of the system (e.g., enzyme concentration) 
changes with respect to variation in an input quantity (e.g., 
degradation rate). Changes are given in fractional terms, or 
change relative to the nominal state. For example, changes in 
the decay rate constant μ by a small amount are characterized 
by the fractional change Δμ/μ. Similarly, the changes in 
enzyme concentration c are characterized by Δc/c, and the 
ratio of these is the sensitivity coefficient. This quantity is 
usually measured in the case of infinitesimally small changes 
in input, which converts the Δ’s into a derivative:

where the last equality is a simple definition from calculus 
and demonstrates that the sensitivity coefficient is equivalent 
to the slope of a log-log plot of output versus input.

But what does this number mean? How do you know 
whether a value of the sensitivity coefficient is “good?” 
In the absence of further knowledge, we would like the 
absolute value of the sensitivity coefficient to be less than 
1. This implies that any fractional change in the input will 
correspond to a smaller fractional change in the output. 
Conversely, if the absolute value is greater than 1, small 
fluctuations in the input will be amplified in the output. 

To illustrate an application of this analysis, we return to our 
example in Figure 1. If the decay constant, μ, is increased, 
the solid line shown in Figure 1C shifts to the dotted line. 
Correspondingly, the steady state value of c decreases to the 
open circle. Using parameter values of V = 1 M/s, Km = 1 M, 
and μ = 0.1 s–1, it is easy to calculate dlnc/dlnμ = –1.11. As 
already noted, this is undesirably high (magnitude greater 
than 1); changes in μ near μ = 0.1 M/s will be amplified by 
11%. 

To make matters worse, it is easy to show in this illustration 
that no feasible values of the three parameters can give a 
sensitivity coefficient of magnitude less than 1. In general, 
it may be difficult to find parameter values that ensure 
robust outputs. In engineered systems, this is often solved by 
feedback regulation.

Thinking Like an Engineer

The engineering and applied mathematics subfield of 
“control theory” refers to the use of feedback loops to ensure 
that system outputs, such as product purity, are maintained 
at set values (see general control loop in Figure 2A). Cruise 
control (now standard on most cars) is an everyday example 
of a feedback control system. When at the desired speed, the 

doi:10.1371/journal.pbio.1000021.g001

Figure 1. Example of a Dynamical System
(A) Reaction schematic of an enzyme, E, catalyzing the conversion of 
substrate, S, to product, P. The final product acts as a catabolite to 
promote the expression of enzyme.
(B) ODE describing the change in time of enzyme concentration, c. 
The first term is the production term, r

p
(c), and the second term is 

degradation, r
d
(c).

(C) Graphical representation of r
p
(c) and r

d
(c). At steady state, these two 

processes will balance, and the concentration of enzyme will become 
constant in time, with a value corresponding to the intersection of these 
two curves. Increasing the degradation constant μ (depicted by shift 
from solid line to dashed line) changes the steady state value of c (from 
closed circle to open circle). The sensitivity of this steady state value of 
c to such changes in parameters can be quantified by the sensitivity 
coefficient.

sensitivity coefficient = limΔμ→0  Δc/c  = μ dc  = dlnc
                                              Δμ/μ   c  dμ   dlnμ

rp(c) = V    c
              Km+ c
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driver implements the set point by pushing the “set” button. 
Thereafter, the controller calculates the difference between 
the current speed and the set point, and opens or closes the 
throttle accordingly (Figure 2B). In reality, the controller 
uses not only the current difference (proportional control), 
but also the time history of the difference (integral control) 
and how fast that difference is changing (derivative control) 
to decide how strongly to respond. As each of the control 
strategies has inherent advantages and disadvantages, rarely 
do engineers implement only one control strategy at a time; 
most often controllers are of the PI (combining proportional 
and integral) or PID (combining all three) type.

Use of feedback control always comes with a cost, or 
design trade-off: an increase in robustness/performance in 
one area must be accompanied by a decrease somewhere 
else [12]. Therefore, when designing a system, an engineer 
(reluctantly) adds complexity only when convinced that the 
simpler system cannot achieve the desired ends. Because of 
design trade-offs, the best an engineer can do to improve 
a system through control is to transfer the sensitivity from 
a critical variable to one not-so-critical. As an example, the 
cruise control in your car ideally will respond to differences 
in speed quickly (but not too quickly). On the other hand, 
a fast-responding controller is sensitive to overshooting the 
desired speed (and in the worst case, to unstable oscillations 
around the desired speed). This can be suppressed, but only 
at the expense at being more sensitive to noise.  In a very real 
sense, plugging a hole with your finger simply results in a leak 
sprung somewhere else.

At this point, it is instructive to stop and consider the 
analogy between biological tissues and engineered systems 
(such as a car). Many biologists have remarked on the 
apparent design of biological systems, arguing that this 
is a false analogy. However, evolutionary theory would 
predict apparent design and purpose in biological systems. 
Therefore, regardless of the origin of this apparent design, 
the analogy is, at the very least, pragmatic [13,14]. Keeping 
this in mind, we can approach a biological system from an 
engineer’s perspective. Engineered systems were designed 
with a particular purpose in mind, so it would be helpful to 
ask, “What is/are the purpose(s) of this biological system?” 
Lander has called these purposes “performance objectives,” 
and determining what they are for a particular biological 
system is especially important in light of design trade-offs, 
and furthermore will provide clues to a system’s molecular 
behavior [14].

To demonstrate, let us return our simple example in Figure 
1. We had originally assumed the removal rate of the enzyme 
was first-order, partially due to a dilution effect: enzyme 
concentration decreases as the cell grows in volume. However, 
if the enzyme is responsible for a growth-limiting reaction, the 
growth rate itself is proportional to the enzyme concentration, 
and thus the degradation rate becomes quadratic: r

d(c) = 
μc 2. In a sense, this is a type of negative feedback in which 
the enzyme is responsible for its own dilution. Under these 
conditions, the sensitivity coefficients for all of the parameters 
will always have a magnitude less than 1! However, as a trade-
off, the system will generally take a longer time to reach steady 
state. So which performance objective is more important to 
the cell: robustness with respect to parameter variation, or 
rapid approach to steady state?

In other words, when optimizing a large system with 
several performance objectives, any one objective, taken in 
isolation, is simple to optimize. However, optimization of 
the whole system—that is, balancing multiple performance 
objectives—can be extremely difficult to achieve, especially 
because performance objectives are often at odds with each 
other. Regarding robustness, in most cases (outside of simple 
examples with one variable and three parameters), it is not 
feasible to design a system in which all sensitivity coefficients 
have a magnitude of less than one; more information is needed 
to ascertain the tolerable values of the sensitivity coefficients. 
What levels of fluctuations in the inputs are we expected to 
face? What kind of error in the output variable(s) are we 
prepared to tolerate? It would be a poor performance objective 
to be robust to variables that are either well-controlled or 
have narrow windows of natural variation, or to minimize the 
sensitivity of an output that has no need of tight control.

Furthermore, robustness to some variables may have 
disastrous consequences. Consider the example of cruise 
control, discussed earlier. If we focus on the controller (rather 
than the car) as the system, then the input is the speed of 
the car, and the output is the signal that opens or closes the 
throttle. If the controller itself were resistant to changes in 
speed of the car, the control system would be useless! In other 
words, determining performance objectives is a first major step 
in understanding the function of a biological system.

A Prime Example

In this issue of PLoS Biology, Lander and colleagues illustrate 
the utility of taking an engineer’s perspective in the context of 

doi:10.1371/journal.pbio.1000021.g002 

Figure 2. Examples of Control Loops
(A) Schematic of a simple control loop. The process output is monitored 
by a sensor, and the value of this output signal is passed to a device 
called a controller. The controller calculates the difference between 
the output signal and the set point (the desired value of the output), 
and responds accordingly, often by physically manipulating an input 
parameter, such as a control valve. 
(B) Schematic of cruise control. The car is the process, and the car’s speed 
is the output. A speedometer sensor within the car tells the cruise control 
the car’s speed. The actuator on the cruise control then responds by 
opening or closing the throttle, allowing air intake into the engine.
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the olfactory neuron cell lineage in the mammalian olfactory 
epithelium (OE) [8]. They describe this unbranched cell 
lineage as consisting of stem cells, an intermediate stage of 
transit-amplifying precursors, and terminally differentiated 
olfactory receptor neurons (ORNs). They investigate the 
mechanisms by which this tissue self-regulates its size, during 
both development and regeneration following injury. 
According to the reigning hypothesis, the ORNs secrete the 
inhibitors GDF11 and activin, causing longer cell cycles of 
stem and precursor cells. Thus, as the tissue grows, inhibitor 
concentration increases, slowly stalling and eventually ceasing 
cell division. Any loss of tissue results in a decrease in inhibitor 
concentration, leading to a proliferative phase for the stem 
and precursor cells to replace the lost tissue.

The authors begin with a general analysis of unbranched 
cell lineages, using a set of ODEs to model the population of 
each cell stage. In the case with no feedback regulation in the 
olfactory neuron cell lineage, they show that the system can 
only realize a steady state number of ORNs under very special 
conditions (i.e., parameter values). A sensitivity analysis shows 
that even small deviations from these conditions have drastic 
consequences on the steady state. 

In further analysis, Lander et al. focus on several 
experimentally observed performance objectives—including 
rapid regeneration after injury, low progenitor load (stem 
plus precursor cells make up less than 10% of the OE), and 
robustness of the steady state—and ask whether feedback 
loops could be designed to simultaneously meet these 
objectives. Briefly, they find that GDF11 must act not only to 
slow the cell cycle of precursor cells, but also to increase the 
likelihood that a dividing precursor cell may produce ORNs. 
In a similar manner, activin must also act on the stem cell 
population.

Next, the authors investigated the ability of the OE to sense 
varying concentrations of GDF11 and activin. In this case, the 
performance objective is sensitivity of inhibitor concentration 
to tissue size (recall the example of the controller on a car 
being sensitive to the car’s speed). They demonstrate that two 
factors must be finely tuned to achieve this objective: (1) the 
decay length of the inhibitor (i.e., how far it can travel before 
being degraded) compared to average tissue height, and (2) 
the ratio of the decay length inside the OE to that outside (in 
the basal stroma).

Remarkably, the work done by Lander et al. [8] suggests 
that biological systems achieve control in much the same way 
as do engineered systems. In the OE, GDF11 and activin act 
as readouts of the size of the tissue (i.e., sensors), and the 
“controller” can be thought of as the cellular machinery that 
transduces and actuates the inhibitory signal. The analogy 
may not merely be superficial, as the authors speculate that 
each of the types of control strategies (proportional, integral, 
and derivative) is used in some fashion in the OE.

What Does This All Mean?

Many biologists have now begun to advocate mathematical 
modeling, noting that “a cartoon model” is no longer 
sufficient [5]. On the other hand, some readers would be 
skeptical of results that so heavily focus on the mathematics. 
This is not an unfounded skepticism, as evinced by numerous 
mathematical models in biology that have failed to accurately 
describe experimental systems. Indubitably, even the best 
mathematical models fail to incorporate full mechanistic 

detail of biological systems. However, when derived from 
well-established physics and chemistry, these models can 
reveal general system behavior that is not easily supported by 
intuitive reasoning.

This is the case with the study by Lander et al. The 
authors begin with very general arguments from physics 
and mathematics, which correctly describe the overall 
behavior of a cell lineage without feedback, and have no 
need to model further detail. Indeed, a more detailed model 
would necessarily behave in a qualitatively similar fashion, 
but would muddy the water on the conclusions. Noting 
that the simple model fails to display robustness (a critical 
performance objective), they add complexity step-wise until 
this performance objective is met. Their model is sufficient 
to show that feedback is vital to the stability and robustness 
of any such lineage. While few would be surprised at this, 
the authors also show what type of feedback is necessary 
to achieve the stated performance objectives of rapid 
regeneration. 

Some have argued that a mathematical model is of no use 
unless it is able to make further predictions about the system. 
To do this, it is preferable to include mechanistic detail in the 
model [5,6]. Should we say then that it is useless to analyze 
biological systems without such detail? Clearly, the answer 
is no, as the model presented by Lander et al. has revealed 
new insights. While the authors make (and experimentally 
investigate) some model predictions, they argue that their 
main goal was to use modeling as an explanatory tool and to 
approach this system from an engineer’s perspective. It seems 
they have met their performance objectives. ◼
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