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EFFECTS OF SOG ON DPP-RECEPTOR BINDING∗

YUAN LOU† , QING NIE‡ , AND FREDERIC Y. M. WAN†

Abstract. Concentration gradients of morphogens are known to be instrumental in cell signaling
and tissue patterning. Of interest here is how the presence of a competitor of BMP ligands affects cell
signaling. The effects of Sog on the binding of Dpp with cell receptors are analyzed for dorsal-ventral
morphogen gradient formation in vertebrate and Drosophila embryos. This prototype system includes
diffusing ligands, degradation of morphogens, and cleavage of Dpp-Sog complexes by Tolloid to free
up Dpp. Simple and biologically meaningful necessary and sufficient conditions for the existence of a
steady state gradient configuration are established, and existence theorems are proved. For high Sog
production rates (relative to the Dpp production rate), it is found that the steady state configuration
exhibits a more intense Dpp-receptor concentration near the dorsal midline. Numerical simulations of
the evolution of the system show that, beyond some threshold Sog production rate, the transient Dpp-
receptor concentration at the dorsal midline would become more intense than that of the steady state,
before subsiding and approaching a nonuniform steady state of lower magnitude. The magnitude of
the transient concentration has been found to increase by several fold with increasing Sog production
rate. The highly intense Dpp activity at and around the dorsal midline is consistent with available
experimental observations and other analytical studies.
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1. Introduction. The proper functioning of tissues and organs requires that
each cell differentiate appropriately for its position. In many cases, the positional
information that instructs cells about their prospective fate is conveyed by concen-
tration gradients of morphogens bound to cell receptors. Morphogens are signaling
molecules that, when bound to cell receptors, assign different cell fates at different
concentrations [1], [2]. Morphogen action is of special importance in understanding
development because it is a highly efficient way for a population of uncommitted cells
in an embryo to create complex patterns of gene expression in space. This role of mor-
phogens has been the prevailing thought in tissue patterning for over half a century,
but only recently have there been sufficient experimental data and adequate analyti-
cal studies for us to begin to understand how various useful morphogen concentration
gradients are formed [3], [4].

Dorsal-ventral (back-to-belly) patterning in vertebrate and Drosophila (fruit fly)
embryos is now known to be regulated by bone morphogenetic proteins (BMP). The
BMP activity is controlled mainly by several secreted factors including the antagonists
chordin and short gastrulation (Sog). In Drosophila, seven zygotic genes have been
proposed to regulate dorsal-ventral patterning. Among them, decapentaplegic (Dpp)
encodes BMP homologues that promote dorsal cell fates such as amnioserosa and
inhibits development of the ventral central nervous system. The chordin homologue
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Sog is expressed ventrally and promotes central nervous system development. The
phenotype of Sog loss-of-function mutants is intriguing; as expected for a Dpp antag-
onist, ventral structures are lost but, in addition, the amnioserosa is reduced. This
result is paradoxical, as the amnioserosa is the dorsal-most tissue, and thus apparently
a BMP antagonist is required for maximal BMP signaling [5], [6], [7], [8].

In principle, morphogen concentration gradients can be generated through the
production of morphogens at particular sources, followed by their diffusion and degra-
dation in appropriate regions [4], [9], [10], [11], [12]. In the above Dpp/Sog system,
the production of Dpp is pretty much uniform in the dorsal region and absent in the
ventral region, while the opposite is true for Sog. However, the Dpp activity has a
sharp peak around the midline of the dorsal region in the presence of its “inhibitor”
Sog. Mutation of Sog results in a reduction and a broadening of Dpp activity around
the midline of the dorsal region. As the system contains many variables, the ques-
tion of what leads to a sharp concentration peak is difficult to tackle by traditional
experimental means.

Recently, Eldar et al. [13] studied a more complex morphogen system that includes
the effects of Sog (and other morphogens) on Dpp activities. By performing massive
computer calculations to search for molecular networks that support robustness, they
found that the presence of the BMP inhibitor Sog stimulates intense Dpp activity
at the dorsal midline resulting in highly nonuniform Dpp-receptor concentration in
space for the the patterning process. They also showed that the Dpp concentration
gradient itself is robust to changes in gene dosage. Two conditions were stipulated in
their model to produce agreement with experimentally observed gradient formation.
First, the steady state of the system is achieved by shutting off the production of
Dpp through setting the production rate to zero 10 minutes after the initiation of
the system [14], and there is no degradation of Dpp-receptor complex in the model.
Second, the model requires immobility of free Dpp molecules; i.e., Dpp does not
diffuse, but diffusion of the Dpp-Sog complexes and other ligands can occur.

For formation of morphogen gradients in a wing imaginal disc (a structure in the
larva that will become the wing of the adult fly), Lander, Nie, and Wan [4] and Lou,
Nie, and Wan [9] have demonstrated the important biological roles of diffusion for Dpp,
and degradation for the Dpp-receptor complex. Without degradation, the steady state
of the system is not achievable unless ligand production is shut off after a while, as in
[14]. Eldar et al., in a recent paper [15], have also studied how degradation of ligand
affects robustness of morphogen gradients. Most recently, the diffusion coefficient of
Dpp has been measured in vivo using FCS (fluorescence correlation spectroscopy)
techniques [16], and it was found that the magnitude of diffusion coefficient for Dpp
is close to the magnitude of the diffusion coefficient for the Dpp-Sog complex used in
[14] and hence not negligible.

Given the rather special restrictions on the Dpp/Sog system in [13] and [14], it is
desirable to investigate the possibility of an alternative and simpler known biological
mechanism for the generation of the intense Dpp activities around the dorsal midline.
In this paper, we will extend the dynamic Dpp/Sog system formulated in [17] for
morphogen activities in dorsal-ventral patterning by allowing for diffusion of ligands,
degradation of the morphogens, and the cleavage of Dpp-Sog complexes by the enzyme
Tolloid to free up a fraction τ of Dpp and to degrade part of Sog.

In this study, we will establish a biologically meaningful necessary and sufficient
condition for the existence of a steady state. This condition requires a balance of
the production of ligands, strength of degradation, and rate of cleavage of Dpp-Sog
complex by Tolloid, with no restrictions on the diffusion coefficients of the ligands.
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Fig. 1. Cross section of a Drosophila embryo, and the reaction schemes with rate constants.

To gain insight into the dependence of the morphogen activities on various biologi-
cal parameters, we will obtain a perturbation solution of the steady state gradients
with a biologically relevant assumption that the Sog production rate is high compared
to that of Dpp [13], [14]. The solution indicates that the requirement for complete
immobility of Dpp is not necessary for a biologically realistic Dpp-receptor gradient
that is intense in Dpp activity at the dorsal midline. Finally, we will perform nu-
merical simulations for the dynamics of the system. It is found that the cleavage of
Sog-Dpp complex by Tolloid produces a transient peak of the Dpp-receptor concen-
tration around the dorsal midline that is significantly stronger than the corresponding
concentration at the steady state. The dependence of the peak on various biological
parameters, including Sog production rate and diffusion coefficients, is also investi-
gated. The overall features of the various concentrations of the model are consistent
with experimental observations [5], [6], [7], [8]. A more complete model including
more biological components and its comparison with new experiments on robustness
of morphogen gradients will be presented in a separate paper [18].

2. Mathematical formulation. For an analytical and computational study of
the biological phenomenon of interest, a system of partial differential equations and
auxiliary conditions is formulated to capture the essential features of the dynamics
of the two interacting morphogens. This approach was first applied to study the
development of the Drosophila wing imaginal disc [19], [20], [4]. The three basic bio-
logical processes involving Dpp in the wing disc are diffusion for free Dpp molecules,
their reversible binding with receptors, and degradation of the bound Dpp. The main
purpose was to investigate the role of diffusion in the formation of a Dpp-receptor
concentration gradient in the wing disc. That system was extended to include the ef-
fect of Sog on Dpp activities in a dorsal-ventral configuration [17] in an embryo, with
the cleavage of Dpp-Sog complexes by Tolloid implicitly incorporated into the sys-
tem through the complete recovery of Dpp after cleavage (while the Sog components
degrade completely). The cleavage-recovery phenomenon has been suggested by pre-
vious experimental studies [21], [22]. Here we consider an even more general system
than that in [17] by allowing fractional recovery through the fraction parameter τ ,
0 ≤ τ ≤ 1, with τ = 1 corresponding to complete recovery.

The setting for dorsal-ventral patterning in a Drosophila embryo during develop-
ment is different and more complex than that considered in [4]. As shown in the
sketch of the dorsal-ventral cross section of the embryo in Figure 1, Dpp is produced
only in the dorsal region (with the rate vL(x)), while Sog is produced only in the
ventral region (with the rate vS(x)). For a one-dimensional study of the dynamics of
Sog and Dpp in the presence of cell receptors, we have idealized the dorsal-ventral an-
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nular cross-section of the embryo as a ring and introduced an artificial cut of the ring
at the ventral midline to map the cut ring onto the line segment [−Xmax, Xmax], with
X = 0 corresponding to the dorsal midline. Let [L], [S], [LS], [LR] denote the concen-
trations of Dpp, Sog, Dpp-Sog complexes, and Dpp bound to receptors, respectively.
The first three diffuse with coefficients of diffusion DL, DS , and DLS , respectively,
while the concentration for the immobile and undegradable receptor is fixed at R0

and uniformly distributed in [−Xmax, Xmax]. The system of equations governing the
morphogen dynamics of such a system consists of the following four coupled second or-
der differential equations, three of them being nonlinear partial differential equations
(PDE) of the reaction-diffusion type:

∂[L]

∂T
= DL

∂2[L]

∂X2
−Kon[L] (R0 − [LR]) − Jon[L][S]

+Koff[LR] +
(
Joff + τJdeg

)
[LS] + vL(X),(1)

∂[LR]

∂T
= Kon[L] (R0 − [LR]) −

(
Koff + Kdeg

)
[LR],(2)

∂[LS]

∂T
= DLS

∂2[LS]

∂X2
+ Jon[L][S] −

(
Joff + Jdeg

)
[LS],(3)

∂[S]

∂T
= DS

∂2[S]

∂X2
− Jon[L][S] + Joff[LS] + vS(X)(4)

for −Xmax < X < Xmax and T > 0. The coefficients {Kon, Jon}, {Koff , Joff},
{Kdeg, Jdeg} are the binding rate constants, the off rate constants, and the degradation
rate constants of Dpp and Sog, respectively. With the morphogen activities symmetric
about the ventral (as well as dorsal) midline, we must have the following symmetry
(no flux) conditions at the two ends of the solution domain:

X = ±Xmax :
∂[L]

∂X
=

∂[LS]

∂X
=

∂[S]

∂X
= 0.

The number of independent parameters may be reduced by suitable normalization.
Let

x =
X

Xmax
, t =

D0T

X2
max

,(5)

{hL, hLS} =
X2

maxR0

D0
{Kon, Jon},(6)

{fL, fLS , gL, gLS} =
X2

max

D0
{Koff , Joff ,Kdeg, Jdeg},(7)

{VL(x), VS(x)} =
X2

max

R0D0
{vL(X), vS(X)},(8)

{ρL, ρS , ρLS} =

{
DL

D0
,
DLS

D0
,
DS

D0

}
,(9)

{A,B,C,D} =

{
[L]

R0
,
[LR]

R0
,
[LS]

R0
,
[S]

R0

}
.(10)
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In these relations, it would seem natural to choose the normalizing diffusion coefficient
D0 to be the maximum of the three diffusion coefficients. However, it turns out to be
more appropriate to choose D0 = DS to facilitate an appreciation of the implication
of the solution. At this time, we will leave D0 unspecified, but will see in section 4
why it is expeditious to specify it as DS . In terms of these normalized quantities,
(1)–(4) may be written as

A,t = ρLA,xx − hLA(1 −B) − hLSAD + fLB + (fLS + τgLS)C + VL(x),(11)

B,t = hLA(1 −B) − (fL + gL)B,(12)

C,t = ρLSC,xx + hLSAD − (fLS + gLS)C,(13)

D,t = ρSD,xx − hLSAD + fLSC + VS(x)(14)

for −1 < x < 1 and t > 0, with ( ),z = ∂( )/∂z for the temporal and spatial derivatives
of the dependent variables A,B,C,D.

3. Existence of steady state solutions. In this section, we examine the exis-
tence of time-independent (or steady state) solutions of the system (11)–(14) subject
to the no flux conditions at the two end points, which can now be written in terms of
the normalized unknowns as

x = ±1 : A,x = C,x = D,x = 0 (t > 0).(15)

With the steady state solution independent of time, (12) becomes an algebraic equa-
tion and can be solved for B in terms of A:

B =
A

αL + A
, αL =

gL + fL
hL

.(16)

The expression for B is then used to eliminate it from (11), leaving the following three
simultaneous equations for the three unknowns A,C, and D:

ρLA,xx − gLhLA

fL + gL + hLA
− hLSAD + (fLS + τgLS)C + VL = 0,(17)

ρLSC,xx + hLSAD − (fLS + gLS)C = 0,(18)

ρSD,xx − hLSAD + fLSC + VS = 0(19)

for −1 < x < 1 subject to the boundary conditions (15).
Throughout this section we assume the following:
(A1) fL, fLS , gL, gLS , hL, and hLS are continuous positive functions in [−1, 1];

ρL, ρLS , and ρS are positive constants; VS , VL are nonnegative integrable functions

that satisfy
∫ 1

−1
VL > 0 and

∫ 1

−1
VS > 0; and τ is a constant satisfying 0 ≤ τ ≤ 1.

If VL(x) and VS(x) are continuous, we seek a classical solution of (15)–(19); i.e.,
A, C, and D are twice continuously differentiable in [−1, 1] that satisfy (15)–(19).
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Theorem 3.1. Suppose that (A1) holds and VL, VS are continuous in [−1, 1].
Then (15)–(19) has a positive classical solution if and only if both of the following
inequalities hold:

∫ 1

−1

VL(x)dx > (1 − τ)

∫ 1

−1

VS(x)dx,(20)

∫ 1

−1

VL(x)dx < (1 − τ)

∫ 1

−1

VS(x)dx +

∫ 1

−1

gL(x)dx.(21)

Since
∫ 1

−1
VL(x) > 0, the first condition is trivially satisfied for τ = 1 (full recov-

ery of Dpp), and the second is a distributed version of the necessary and sufficient
condition for existence in [9], [10], [11], [12] (that the Dpp production rate must be
slower than the degradation rate of the Dpp-receptor complexes). For 0 ≤ τ < 1,
these two conditions may be combined to give a similar condition on a nonnegative
“effective” Dpp production rate [VL − (1 − τ)VS ] (see section 5).

Lemma 3.2. If (15)–(19) has a positive classical solution, then (20) and (21)
must hold.

Proof. Adding up (17) and (18) and integrating over [−1, 1], we obtain with the
help of (15)

∫ 1

−1

VL =

∫ 1

−1

gLhLA

fL + gL + hLA
+ (1 − τ)

∫ 1

−1

gLSC.(22)

Similarly, adding up (18) and (19) and integrating over [−1, 1], we get

∫ 1

−1

gLSC =

∫ 1

−1

VS .(23)

It follows from (22) and (23) that

∫ 1

−1

VL =

∫ 1

−1

gLhLA

fL + gL + hLA
+ (1 − τ)

∫ 1

−1

VS .(24)

For A > 0 in [−1, 1], we have

0 <

∫ 1

−1

gLhLA

fL + gL + hLA
<

∫ 1

−1

gL,(25)

which along with (24) implies (20)–(21).
In view of Lemma 3.2, we’ll assume that (20)–(21) holds for the rest of this

subsection. Our goal is to show that if VL and VS are continuous, then the condition
(20)–(21) implies that (15)–(19) has at least a positive classical solution. The idea is
to introduce some parameter λ and consider the following system of equations:

ρLÃ,xx + λF1(x, Ã, C̃, D̃) = 0, −1 < x < 1,(26)

ρLSC̃,xx + λF2(x, Ã, C̃, D̃) = 0, −1 < x < 1,(27)
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ρSD̃,xx + λF3(x, Ã, C̃, D̃) = 0, −1 < x < 1,(28)

Ã,x = C̃,x = D̃,x = 0 at x = −1, 1,(29)

where λ ∈ (0, 1] and Fi (i = 1, 2, 3) is given by

F1(x, Ã, C̃, D̃) = − gLhLÃ

fL + gL + hLÃ
− hLSÃD̃ + (fLS + τgLS)C + VL,(30)

F2(x, Ã, C̃, D̃) = hLSÃD̃ − (fLS + gLS)C̃,(31)

F3(x, Ã, C̃, D̃) = −hLSÃD̃ + fLSC̃ + VS .(32)

We establish some a priori estimates for nonnegative classical solutions of (26)–
(29).

Lemma 3.3. Let (Ã, C̃, D̃) be any nonnegative classical solution of (26)–(29). If
λ > 0, then Ã(x) > 0, C̃(x) > 0, and D̃(x) > 0 for every x ∈ [−1, 1].

Proof. Similar to (23) we have
∫ 1

−1
gLSC̃ =

∫ 1

−1
VS . Hence C̃ ≥ 0, C̃ �≡ 0. By (27)

and (31) we have

−ρLSC̃,xx + λ(fLS + gLS)C̃ = λhLSÃD̃ ≥ 0, −1 < x < 1.(33)

This together with C̃,x(−1) = C̃,x(1) = 0, via the maximum principle [23], implies

that C̃(x) > 0 for every x ∈ [−1, 1]. Since VL �≡ 0 and VS �≡ 0, similarly by (26)–(29)
and the maximum principle we can show that Ã > 0 and D̃ > 0 in [−1, 1].

Lemma 3.4. There exists some constant M > 0, independent of λ, such that for
any 0 < λ ≤ 1 and any positive classical solution (Ã, C̃, D̃) of (26)–(29) we have

‖Ã‖L∞ + ‖C̃‖L∞ + ‖D̃‖L∞ ≤ M.(34)

The proof of Lemma 3.4 is postponed to the appendix. Lemmas 3.3 and 3.4 enable
us to define Leray–Schauder degree (see, e.g., [24]) for a certain operator whose fixed
points correspond to positive solutions of (26)–(29).

Set E = {C[−1, 1]}3 and C2
N [−1, 1] = {u ∈ C2[−1, 1] : u,x(−1) = u,x(1) = 0}. For

any positive constant γ, let L−1
γ denote the inverse of the operator Lγ := −γ d2

dx2 + I :
C2

N [−1, 1] → C[−1, 1], where I denotes the identity map from C[−1, 1] to itself.
For every λ ∈ [0, 1], define operator T (λ) : E → E by

T (λ)(Ã, C̃, D̃) =

⎛
⎝L−1

ρL
[Ã + λF+

1 (x, Ã, C̃, D̃)]

L−1
ρLS

[C̃ + λF2(x, Ã, C̃, D̃)]

L−1
ρS

[D̃ + λF3(x, Ã, C̃, D̃)]

⎞
⎠ ,(35)

where

F+
1 (x, Ã, C̃, D̃) =

−gLhLA

fL + gL + hLA+
− hLSAD + (fLS + τgLS)C + VL,(36)

A+ = max(A, 0). By standard regularity theory and the embedding theorem, we
see that T (λ) is well defined and continuous, and the operator T̃ : [−1, 1] × E → E,
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defined by T̃ (λ, Ã, C̃, D̃) = T (λ)(Ã, C̃, D̃), is continuous and compact. For M given
in (34), define

Ω =
{

(Ã, C̃, D̃) ∈ E : 0 < Ã(x), C̃(x), D̃(x) < M + 1 ∀x ∈ [−1, 1]
}
.

Ω is an open and bounded subset of E. By Lemmas 3.3 and 3.4, we see that for any λ ∈
(0, 1], [I − T (λ)]−1 {(0, 0, 0)} /∈ ∂Ω. Hence the Leray–Schauder degree, deg

(
I − T (λ),

Ω, (0, 0, 0)
)
, is well defined for 0 < λ ≤ 1. Moreover, by the homotopy invariance of

the Leray–Schauder degree [24], deg (I − T (λ),Ω, (0, 0, 0)) is a constant function for
0 < λ ≤ 1. To complete the proof of Theorem 3.1, we need the following result.

Proposition 3.5. There exists δ > 0 such that deg (I − T (λ),Ω, (0, 0, 0)) = 1
for λ ∈ (0, δ).

The detail of the proof of this proposition is not particularly relevant to the proof
of Theorem 3.1 and will be given in an appendix of this paper. Assuming Proposition
3.5, we can now complete the proof of Theorem 3.1.

Proof of Theorem 3.1. By Lemma 3.2, it suffices to establish the sufficiency
part. By Proposition 3.5, for every 0 < λ ≤ 1, deg (I − T (λ),Ω, (0, 0, 0)) = 1. In
particular, deg (I − T (1),Ω, (0, 0, 0)) �= 0. This implies that there exists (Ã, C̃, D̃) ∈ Ω
such that (I − T (1))(Ã, C̃, D̃) = (0, 0, 0). By standard regularity theory we see that
Ã, C̃, D̃ ∈ C2[−1, 1] and is thus a positive classical solution of (15)–(19).

Specific morphogen systems of interest include those with morphogen production
rates that are discontinuous in the spatial variable (see section 4). When VL and
VS are bounded and measurable, we will be seeking C1,1 solutions of (15)–(19), i.e.,
functions A,C,D that are differentiable in [−1, 1]; have derivatives A,x, C,x, and D,x

Lipschitz continuous in [−1, 1]; and satisfy (15) and for every x ∈ [−1, 1]

ρLA,x +

∫ x

−1

F1 = ρLSC,x +

∫ x

−1

F2 = ρSD,x +

∫ x

−1

F3 = 0.(37)

Theorem 3.6. Suppose that (A1) holds and that VL and VS are bounded mea-
surable. Then (15)–(19) has a positive C1,1 solution if and only if (20)–(21) holds.

Proof. Suppose that (15)–(19) has a positive C1,1 solution. Setting x = 1 in
(37) and applying the same argument as in the proof of Lemma 3.2, we see that
(20)–(21) must hold. On the other hand, if (20)–(21) holds, we can choose a uni-
formly bounded sequence of continuous positive functions V n

L (x) and V n
S (x) such that

V n
L (x) → VL and V n

S (x) → VS a.e., and 0 <
∫ 1

−1

[
V n
L − (1 − τ)V n

S

]
<

∫ 1

−1
gL. By

Theorem 3.1 (17)–(19), with VL and VS being replaced by V n
L and V n

S , respectively,
there is a sequence of positive classical solutions, denoted by An, Cn, and Dn. As
for Lemma 3.4, we can show that there exists some positive constant M , indepen-
dent of n, such that ‖An‖L∞ + ‖Cn‖L∞ + ‖Dn‖L∞ ≤ M . Furthermore, ‖An

,xx‖L∞ ,
‖Cn

,xx‖L∞ , and ‖Cn
,xx‖L∞ are uniformly bounded. By passing to a subsequence if nec-

essary, (An, Cn, Dn) converge to some functions (A,C,D) in C1, and A,C,D satisfy
(15) and are nonnegative solutions of (37). From (37) we see that A,x, C,x, D,x are
Lipschitz continuous in [−1, 1]. By similar argument as in Lemma 3.3 (but instead
using the maximum principle for weak solutions of (15)–(19)), we see that A,C,D are
all positive in [−1, 1]. This completes the proof of Theorem 3.6.

Remark 3.7. Note that C ∈ C2[−1, 1]. If VL and VS are piecewise continuous,
then A and D are also piecewise twice continuously differentiable in [−1, 1].

4. Approximate steady state solutions for VL � VS. In previous studies
[13], [14], the constant (in both space and time) Dpp production rate, v̄L, in the dorsal



1756 YUAN LOU, QING NIE, AND FREDERIC Y. M. WAN

region was estimated to be significantly smaller than the constant Sog production rate,
v̄S , in the ventral region. In [14], the ratio of the two production rates, defined as
ε ≡ v̄L/v̄S , is 0.008 for its baseline study. The robustness of the solutions with respect
to variations of v̄S is studied for fixed v̄L [13].

For v̄L 
 v̄S , so that ε 
 1, we obtain below a perturbation solution for the
steady state of (15)–(19), with τ = 1 for simplicity. For τ < 1, perturbation solution
procedure applies only if (20)–(21) hold. Similar to [14], we assume

VL(x) = V̄LH

(
1

2
− x

)
, VS(x) = V̄SH

(
x− 1

2

)
,(38)

where (V̄L, V̄S) = (v̄L, v̄S)X2
max/(R0D0) and H(z) is the unit step function.

With V̄L 
 V̄S , we expect D(x), C(x) = O(V̄S), O(V̄S), although the latter may
be a smaller fraction of V̄S . On the other hand, we have A(x) = O(V̄L) at most, in
fact quite a bit smaller since free Dpp should eventually be bound to Sog or receptors,
given that Sog is produced at a much higher rate. For these reasons, we set

A(x) =
V L

μ2
L

a(x), C(x) =
V S

fLS + gLS
c(x), D(x) = V Sd(x),(39)

where μ2
L = gL/αL and αL = (fL + gL)/hL. Then (17)–(19) become

V L

V S

[
ρL
μ2
L

a′′ − a

1 + βLa
+ H

(
1

2
− x

)]
− μ2

Dad + c = 0,(40a)

ρLSc
′′ + (fLS + gLS)[μ2

Dad− c] = 0,(40b)

ρSd
′′ − [μ2

Dad− c] − (1 − σLS)c + H

(
x− 1

2

)
= 0,(40c)

where ()
′
= d()/dx, βL = V̄L/gL, σLS = fLS/(fLS+gLS) < 1, and μ2

D = hLSαLV̄L/gL.
Using symmetry about x = 0, we need only to consider solutions for 0 < x < 1 with
the boundary conditions at x = 0 being again no flux for all three unknowns a, b, and
c.

The form of (40a)–(40c) suggests that we seek a perturbation solution of {a, c, d}
in ε:

{a(x; ε), c(x; ε), d(x; ε)} =
∞∑

n=0

{an(x), cn(x), dn(x)} εn.(41)

For moderate values of V̄L so that μ2
D is not small compared to unity, the three leading

term coefficients are determined by

μ2
Da0d0 − c0 = 0,(42a)

ρLSc
′′
0 + (fLS + gLS)[μ2

Da0d0 − c0] = 0,(42b)

ρSd
′′
0 − [μ2

Da0d0 − c0] − (1 − σLS)c0 + H

(
x− 1

2

)
= 0.(42c)

The complementary case, μ2
D 
 1, can also be analyzed but is not relevant for our

biological system.
Upon combining (42a) and (42b) we get

ρLSc
′′
0 = 0.(43)
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The no flux boundary conditions at x = 0, 1 require c0(x) ≡ σ0 for some constant σ0.
To determine σ0, we note that (23) is still valid and requires

1
2V S =

∫ 1

0

Vs(x)dx = gLS

∫ 1

0

C(x)dx = V S
gLS

fLS + gLS

∫ 1

0

c(x)dx(44)

so that σ0 = 1/2(1 − σLS), i.e.,

(1 − σLS)c0(x) =
1

2
, 0 ≤ x ≤ 1.(45)

To determine d0(x), we use (42a) and (42c) to obtain

ρSd
′′
0 − (1 − σLS)c0 + H

(
x− 1

2

)
= 0.(46)

Upon integration and application of boundary conditions at x = 0, 1, as well as the
continuity condition at x = 1/2 for d0, we obtain

ρSd0(x) =

⎧⎪⎪⎨
⎪⎪⎩

δ0 +
x2

4

(
x ≤ 1

2

)
,

δ0 −
1

8
+

1

2

(
x− x2

2

) (
x ≥ 1

2

)
,

(47)

where δ0 is an undetermined constant. By (42a) we have also

1 − σLS

ρS
μ2
Da0(x) =

1 − σLS

ρS

c0(x)

d0(x)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2

1

(δ0 + 1
4x

2)

(
x <

1

2

)
,

1

2

1

[δ0 − 1
8 + 1

2x− 1
4x

2]

(
x >

1

2

)
.

(48)

It is rather fortuitous to have a0
′(0) = a0

′(1) = 0 because d0 and c0 satisfy no flux
conditions at the two end points so that there are no boundary layers adjacent to the
two ends.

It remains to determine δ0. We note that (24) still holds, particularly when τ = 1.
In that case, (24) becomes

G(δ0) ≡
∫ 1

0

a0(x)

1 + βLa0(x)
dx =

1

2
.(49)

It is easy to see that G(δ0) is strictly monotone decreasing in δ0 and that G(δ0) → 0
as δ0 → ∞. Hence G(δ0) = 1

2 has at most one positive root, and it has one positive
root if and only if G(0) > 1

2 . Note that G(0) can be explicitly computed, and thus
G(δ0) = 1

2 determines δ0.
Altogether, we have as the corresponding leading terms for the concentrations

A(x) ∼ (1 − σLS)μ2
Da0(x)/ρS

R0Jon,eff/(DS/X2
max)

,(50)

B(x) ∼ ΓLS(1 − σLS)μ2
Da0(x)/ρS

1 + ΓLS(1 − σLS)μ2
Da0(x)/ρS

,(51)
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Fig. 2. Comparisons between the numerical steady states (solid lines) and the perturbation
solutions (dashed lines). The parameters are v̄L = 8 × 10−4s−1μM , Kon = 0.4s−1, Koff =
4 × 10−6s−1, Kdeg = 3.2 × 10−3s−1, v̄S = 6 × 10−2s−1μM , Jon = 6s−1μM , Joff = 10−5s−1,
Jdeg = 6 × 10−2s−1, τ = 1.

C(x) ∼ 1

2

v̄S
JdegR0

,(52)

D(x) ∼ v̄S/R0

DS/X2
max

[ρSd0(x)],(53)

where

Kon,eff ≡ KdegKon

Kdeg + Koff
, Jon,eff ≡ JdegJon

Jdeg + Joff
, ΓLS =

Kon,eff

Jon,eff

DS

KdegX2
max

.

(54)

In Figure 2, the perturbation solutions (50)–(53) are plotted against the numerical
solutions obtained through temporal evolution (which will be discussed in the next
section). The relative difference between the two solutions is 1.5% for A, 1.4% for B,
4.3% for C, and 2.9% for D for ε = v̄L/v̄S = 0.0133 and μ2

D = 18.4. This illustrates
the approximation and accuracy of the perturbation solution for ε 
 1.

More interesting is the dependence of the leading term solutions (51)–(53) on the
biological parameters. The simplest of the four is the uniformly distributed concen-
tration of Dpp-Sog complexes in (53): it depends only on the production rate of Sog
per receptor, which is uniform in the ventral region. Free Sog D(x) is proportional
to the quadratic function defined in (47) with a magnitude of v̄S/R0 modified by the
diffusion coefficient of Sog. That D(x) is inversely proportional to DS is not sur-
prising, since faster diffusion of Sog would move more of it into the dorsal region for
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binding with the available Dpp there. Note that ρSd0(x) is independent of the choice
of normalizing diffusion coefficient D0 and the effects of all biological parameters are
felt by ρSd0(x) only implicitly through the parameter δ0.

Less expected is the dependence of A(x) and B(x) on the biological parameters.
From (51), we see that if ΓLS = O(1), the amplitude of B(x) is determined mainly
by ΓLS . For ΓLS  1, we have B(x) ∼ 1, except possibly for a region adjacent to
the ventral midline x = 1. In either case, the amplitude of B(x) does not depend
explicitly on either of the two production rate parameters v̄S/R0 or v̄L/R0; the effects
of these two parameters on B(x) are felt only through δ0.

The situation is similar for A(x). It seems unreasonable that A(x) does not tend
to zero with v̄L/R0 (with the same observation applied to B(x) as well). However,
we see from a closer examination of (40a) that μ2

D = hLSαLV̄L/gL tends to zero with
v̄L/R0. For sufficiently small v̄L/R0, the first approximation relation (42a) would
give c0(x) = 0. In that case, c(x) should be rescaled (by an additional factor μ2

D)
for a proper perturbation solution, while the solution of this section ceases to be
applicable. In other words, to apply the perturbation solution {a0(x), c0(x), d0(x)}
obtained above, we must have v̄L/R0 sufficiently small so that V̄L/V̄S = v̄L/v̄S 
 1
but not too small so that μ2

D = hLSαLV̄L/gL is not small compared to unity.

5. Numerical solutions for evolutions. The system (1)–(4) can be solved
by finite difference schemes [25]. The diffusion terms are approximated by the sec-
ond order central difference. The temporal evolution is approximated through the
fourth order Adams–Moulton predictor-corrector method. The overall accuracy for
the method is second order in space and fourth order in time.

For a typical calculation, the time step is chosen to be �t = 2 × 10−4 seconds,
and the number of points to discretize the entire dorsal and ventral region is N = 64.
Smaller time step and larger number of points have been used to check the accuracy
and convergence of the calculations.

Similar to [13], the span of both the dorsal region and the ventral region is chosen
to be 175μm, i.e., Xmax = 175μm. Unlike [13], the diffusion constants for Dpp, Sog,
and Dpp-Sog are taken to be the same with D0 = DL = DLS = DS = 20μm2/second
[4], so that ρL = ρS = ρLS = 1 (except for changes indicated in Figures 7 and 8).
In this study, the synthesis rates for Dpp and Sog remain the same for all time. In
particular, vL(X) is always chosen to be a nonzero constant, v̄L, in the dorsal region
and zero in the ventral region, while vS(X) is the opposite, with vS(X) = v̄S in the
ventral and zero in the dorsal region.

The dynamics of the system without Sog is very similar to that in [4], even though
the ligand is produced from a localized source in [4] while the ligand is produced in
the whole dorsal region for the system (1)–(4). For realistic ranges of the biological
parameters of the problem, this system typically evolves quickly and monotonically
to a steady state within a half hour, with the Dpp-receptor concentration almost
uniform around the dorsal region. This behavior is consistent with the experimental
observation of [8]. At x = 0 the steady state is approximately equal to v̄L/(KdegR0).

Without Sog, the solution at any fixed x is found to be an increasing function of
time. This feature is also observed for cases where Sog is synthesized at a slow rate
or at a rate comparable to the Dpp production rate. The situation is different if the
Sog production rate is significantly larger than the Dpp production rate, which is the
most biologically relevant case [13]. In Figure 3, time evolution of a typical system
for large v̄S is plotted. It is observed that the spatial distributions of Dpp and the
Dpp-receptor complex continue to have maximum concentrations at the middle of the
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Fig. 3. The dynamics of solutions with SOG at every 5 minutes; o in the left-hand panels
marks the steady-state solutions. All parameters are the same as for Figure 2.

dorsal region, x = 0, at any instance in time (see the left-hand panels). However,
the various morphogen concentrations at x = 0 (the center of the dorsal region) peak
at an early time, then oscillate, with the amplitude of oscillations decaying until the
concentrations reach their steady state (see the right-hand panels). Therefore we
record two interesting curves for Dpp-receptor concentration: the transient solution
with the largest value at the dorsal midline and the steady state solution.

In Figure 4(a), the steady state for Dpp-receptor concentration of our system
(from the same numerical simulations for Figure 3) are plotted. With Sog (v̄S �=
0), the Dpp-receptor in the dorsal region generally has sharper gradient and larger
concentration than those without Sog (v̄S = 0). For the transient solution at its
maximal peak magnitude, the concentration with Sog is at least double that without
Sog around the middle region. These are consistent with the experimental observation
in [8].

In steady state, the system with or without Sog has the same total amount of
Dpp-receptor complex for τ = 1. This can be shown by simply adding the right-hand
sides of (11)–(13) and (13)–(14), respectively, and then integrating them through the
whole domain: ∫ 1

−1

gLBdx =

∫ 1

−1

(VL(x) − (1 − τ)VS(x)) dx.(55)

This relationship is independent of the presence of Sog when τ = 1. In other words,
the effect of inhibitor on Dpp-receptor concentration in the steady state is a spatial
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redistribution, not an increase or decrease in total concentration aggregated over the
entire embryo if all degraded Dpp-Sog complexes, [LS], are cleaved to free up Dpp
and degrade only the Sog component.

For the transient solution, the presence of Sog clearly helps build up the Dpp-
receptor complexes in terms of both gradient and concentration, as shown in Figure
3. In Figure 4(b), we study how the transient peak of Dpp-receptor and the steady
state at the dorsal midline (x = 0) depend on v̄S . The steady state for B without
Sog at x = 0 is 0.25, and its value is plotted at the y-axis in Figure 4(b). For a
small amount of Sog, the transient peaks are not high, and the steady state has the
largest value at x = 0, as shown for v̄S/R0 < 0.01. Also, B(x = 0) at steady state
increases as v̄S increases, and the transient peak begins to deviate from the steady
state around v̄S/R0 = 0.01. As v̄S increases by one order of magnitude from 0.015 to
0.1, the transient peak increases from 0.34 to 0.99, while the steady state only from
0.32 to 0.34. Once v̄S/R0 becomes large enough, the variation of the transient peak
is more sensitively dependent on variation of v̄S/R0 than that of the steady state at
x = 0. The dependence of the transient peak on other parameters such as Jon and
Jdeg have been investigated previously in [17] for τ = 1.

When τ < 1, so that only a portion of the degraded Dpp-receptor complex is
cleaved to free up Dpp, the dynamics of the system strongly depends on the size
of τ when the steady state condition (20)–(21) holds. It is not surprising that for
smaller τ , i.e., less free Dpp released from the degraded [LS], the transient and steady
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peaks of Dpp-receptor complex are lower, as shown in Figure 5(a) for τ = 0.995 and
0.99. However, for τ = 0.99, the concentration of Dpp-receptor complex around the
dorsal region is much lower with Sog than without Sog, as shown in Figure 5(a). As
demonstrated in (55), a small change of τ will result in a large change of [LR] at steady
state for a large v̄S , which is the case for Figure 5(a). In essence, veff ≡ v̄L−(1−τ)v̄S
can be regarded as an effective production rate for Dpp.

When the effective production rate veff becomes negative, that is, the condition
(20)–(21) does not hold, then the system can no longer sustain a steady state. For
this situation, the concentrations of both free Dpp and the Dpp-receptor complex
are typically very low, and the Dpp-receptor complex reaches the peak before Sog
diffuses into the dorsal region from the ventral side and takes over the reaction with
Dpp. With the availability of a large amount of Sog and its fast association rate with
Dpp, Dpp-Sog reaction dominates. It is interesting to note in Figure 5(b) that as τ
varies from 0.98 to 0, the time for Dpp and Dpp-receptor complex to reach their peaks
barely changes. This critical time (to reach the peak) is mainly determined by the
coefficient of diffusion DS , which controls the speed of Sog movement into the dorsal
zone.

In [14] (hence also in [13]), degradation for [LR] is not allowed in the system
(Kdeg = 0); therefore the condition (20)–(21) does not hold for any v̄L > 0. In
order to achieve steady state in [13], [14], the models there turned off production
of Dpp after 10 minutes (T ∗ = 10 minutes). The effect of the choice of T ∗ and



EFFECTS OF SOG ON DPP-RECEPTOR BINDING 1763

0 1000 2000 3000 4000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time to turn off Dpp production (sec.)

D
pp

R
ec

ep
to

r-
co

nc
en

tr
at

io
n 

(μ
 M

) 
at

 x
=

0

-200 -100 0 100 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Distance(μ m)

D
pp

-R
ec

ep
to

r 
co

nc
en

tr
at

io
n 

(μ
 M

)

(a)      (b)
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times of turning off v̄L, as shown in (a). Other parameters are as in Figure 3 except that Kdeg = 0.

the biological background for the choice T ∗ = 10 minutes were not discussed in
[13] and [14]. In Figure 6, we study how our system reacts to the choice of T ∗ if
Kdeg = 0. It is found that the evolution of [LR] at the dorsal midline becomes
monotone, unlike the case in Figure 3, and as expected, the time to reach steady
states strongly depends on the choice of T ∗. In Figure 6, the steady states for [LR]
are shown for T ∗ = 5, 8, 10, 12, 15, 20, 30, 45, 60 minutes. The concentration of [LR]
varies almost linearly with respect to T ∗ until the receptors are close to being fully
occupied when T ∗ is large.

Finally, we investigate the effect of diffusion. In Figure 7, Dpp-receptor complexes
as functions of time and space are shown for five different choices of diffusion constants.
Case (a) has all three diffusion constants the same as in Figure 3, cases (b)–(d) have
one of the diffusion constants being 1% of the corresponding value in case (a), and the
case (e) has two constants at 1% of the corresponding values in case (a). Similarly in
Figure 8, some of the diffusion constants are 10-fold larger than others.

As shown in case (b) of both Figures 7 and 8, the magnitude of the diffusion co-
efficient for Dpp has very little effect on the broadness and intensity of Dpp activity
at the dorsal midline. This is consistent with the behavior of the leading term pertur-
bation solution. A larger diffusion for Dpp reduces the peak of transient Dpp-activity
at the midline slightly and broadens it slightly. On the other hand, a decrease in
diffusion constant for Dpp-Sog complexes, as in cases (d) and (e), significantly broad-
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Fig. 7. Effect of smaller diffusion constants on the transient peak and steady state. For the
left-hand panels, solid line: transient peak; dotted line: steady state. Parameters are as in Figure 3
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ens the Dpp activity around the midline for both peak transient and steady state
distributions, with the height of only the transient peak reduced significantly but
with almost the same steady state at x = 0. The time to steady state and transient
peaks seems to be insensitive to the change of the diffusion constants for Dpp or the
Dpp-Sog complex.

As predicted by the perturbation solutions, varying the diffusion coefficient for
Sog changes the Dpp activity around the dorsal midline significantly. As shown in
Figure 7(c), a smaller diffusion of Sog relative to the diffusion of Dpp leads to more
concentrated transient Dpp activity around the dorsal midline, but it takes much
longer to reach the steady state, with a monotone increase of Dpp activity around the
dorsal midline (i.e., there is no transient peak). On the other hand, larger diffusion
of Sog relative to the diffusion of Dpp weakens and broadens the Dpp activity, as in
Figure 8(c).

6. Conclusions. The dynamics of Dpp activities in the presence of the inhibitor
Sog is analyzed herein to initiate a study of dorsal-ventral morphogen gradient for-
mation in vertebrates and Drosophila embryos. Here we investigate a prototype mor-
phogen system with typical ligand diffusion and degradation, but now with the ad-
ditional feature of cleavage of Dpp-Sog complexes by Tolloid to free up Dpp.Among
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the principal results of our investigation is the establishment of a simple and biologi-
cally meaningful necessary and sufficient condition for the existence of a steady state
gradient in the system. This condition requires a balance of the production rates of
ligands, degradation rate of ligand-receptor complex, and rate of cleavage of ligand-
inhibitor complex. For high Sog production rates (relative to the Dpp production
rate), a perturbation solution has been obtained in terms of elementary functions.
This solution exhibits an intense Dpp-receptor concentration near the dorsal midline.
Numerical simulations of the evolution of the system confirmed these features of the
steady state behavior. In addition, a transient peak of Dpp-receptor concentration at
the dorsal midline was found to be even more intense prior to steady state, reaching
more than twice the level of the steady state at its peak amount. This transient peak
is more sensitively dependent on variation of the production of Sog than the steady
state peak. The high Dpp-receptor concentration around the dorsal midline and other
features of the system are consistent with experimental observations.

Appendix A.

Proof of Lemma 3.4. We show that there exists M1 > 0 such that ‖C̃‖L∞ ≤ M1.
As in the proof of Lemma 3.3, ‖C̃‖L1 ≤ M2 for some constant M2 > 0. Integrating
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(27) in (−1, 1), we get

∫ 1

−1

hLSÃD̃ =

∫ 1

−1

(fLS + gLS)C̃,(56)

which implies that
∫ 1

−1
ÃD̃ ≤ M3

∫ 1

−1
C̃ ≤ M2M3 for some M3 > 0. Integrating (27)

from −1 to x, we get

ρLSC̃,x + λ

∫ x

−1

[hLSÃD̃ − (fLS + gLS)C̃] = 0, −1 < x < 1.(57)

Hence

ρLS‖C̃,x‖L∞ ≤ ‖hLS‖L∞

∫ 1

−1

ÃD̃ + ‖fLS + gLS‖L∞

∫ 1

−1

C̃ ≤ M4(58)

for some constant M4 > 0. This along with
∫ 1

−1
C̃ ≤ M2 implies the L∞ bound of C̃,

which is independent of λ.
Next we show that there exists some constant M5 > 0 such that ‖Ã‖L∞ ≤ M5.

To this end, adding up (26) and (27) and integrating from −1 to x, we get

ρLÃ,x + ρLSC̃,x = λ

∫ x

−1

[
gLhLÃ

fL + gL + hLÃ
+ (1 − τ)gLSC̃ − VL

]
,(59)

which implies that

‖Ã,x‖L∞ ≤ M6

(
‖C̃,x‖L∞ + ‖gL‖L∞ + ‖ρLS‖L∞

∫ 1

−1

C̃ + ‖VL‖L∞

)
:= M7.(60)

We claim that there exists some constant M8 > 0 such that
∫ 1

−1
Ã ≤ M8. To

establish this assertion, we argue by contradiction: if not, passing to a subsequence if

necessary, we may assume that
∫ 1

−1
Ã → +∞. This together with (60) implies that

∣∣∣∣∣ Ã(x)∫ 1

−1
Ã

− 1

∣∣∣∣∣ ≤ ‖Ã,x‖L∞∫ 1

−1
Ã

≤ M7∫ 1

−1
Ã

→ 0 ∀ − 1 ≤ x ≤ 1.(61)

Hence Ã → +∞ uniformly. Similar to (24) we have

∫ 1

−1

VL =

∫ 1

−1

gLhLÃ

fL + gL + hLÃ
+ (1 − τ)

∫ 1

−1

VS .(62)

By (61) we have
∫ 1

−1
gLhLÃ

fL+gL+hLÃ
→

∫ 1

−1
gL, which together with (62) implies that∫ 1

−1
VL =

∫ 1

−1
gL + (1 − τ)

∫ 1

−1
VS . However, this contradicts (21). Therefore

∫ 1

−1
Ã

is uniformly bounded for λ ∈ (0, 1]. This together with (60) yields ‖Ã‖L∞ ≤ M5 for
some M5 > 0.

Finally we show that there exists some constant M9 > 0 such that ‖D̃‖L∞ ≤ M9.
We argue by contradiction: suppose not; passing to a subsequence if necessary, we

may assume that ‖D̃‖L∞ → ∞ and λ → λ̂ ∈ [0, 1]. Set D̂(x) = D̃(x)

‖D̃‖L∞
.Then D̂
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satisfies D̂,x(−1) = D̂,x(1) = 0, ‖D̂‖L∞ = 1, and

ρLSD̂,xx + λ

[
−hLSÃD̂ +

fLSC̃ + VS

‖D̂‖L∞

]
= 0, −1 < x < 1.(63)

Since ‖Ã‖L∞ , ‖Ã,x‖L∞ are uniformly bounded, we may assume that Ã(x) →
A∗(x) uniformly in [−1, 1]. From (62) and (20) we see

∫ 1

−1
Ã ≥ M10 > 0 for some

constant M10. Hence A∗ �≡ 0 since
∫ 1

−1
A∗ ≥ M10 > 0. By standard regularity theory

we may assume that D̂(x) → D∗(x) in C1[−1, 1], and D∗ is a weak solution of

ρLSD
∗
,xx − λ̂hLSA

∗D∗ = 0, −1 < x < 1, D∗
,x(−1) = D∗

,x(1) = 0.(64)

Moreover, D∗ ≥ 0 in [−1, 1] and ‖D∗‖L∞ = 1. If λ̂ > 0, since A∗ �≡ 0, A∗ ≥ 0, by the

maximum principle we see that D∗ ≡ 0, which contradicts ‖D∗‖L∞ = 1; if λ̂ = 0, then
it follows from (64) that D∗ ≡ 1, i.e., D̂(x) → 1 uniformly. Dividing (56) by ‖D̃‖L∞ ,

we have
∫ 1

−1
hLSÃD̂ =

∫ 1

−1
(fLS + gLS)C̃/‖D̃‖L∞ . Then we obtain

∫ 1

−1
hLSA

∗ = 0,
which implies that A∗ ≡ 0. Contradiction! This completes the proof of (34).

When λ = 0, (Ã, C̃, D̃) is a solution of (26)–(29) if and only if Ã, C̃, and D̃ are
all constants. It turns out that a particular triple, denoted by (Â, Ĉ, D̂), is special,
where Â, Ĉ, D̂ are defined as follows: by (20)–(21) it is easy to see that there is a
unique positive constant, denoted by Â, such that

∫ 1

−1

gLhLÂ

fL + gL + hLÂ
=

∫ 1

−1

VL − (1 − τ)

∫ 1

−1

VS .(65)

Set

D̂ =

∫ 1

−1
(fLS + gLS)

∫ 1

−1
VS

Â
∫ 1

−1
hLS

∫ 1

−1
gLS

, Ĉ =

∫ 1

−1
VS∫ 1

−1
gLS

.(66)

Lemma A.1. Suppose that (20)–(21) holds. Let (Aλ, Cλ, Dλ) denote positive
solutions of (26)–(29). Then as λ → 0+, (Aλ, Cλ, Dλ) → (Â, Ĉ, D̂) uniformly.

Proof. By Lemma 3.4, (Aλ, Cλ, Dλ) are uniformly bounded. By standard regu-
larity theory and the embedding theorem, passing to a subsequence if necessary, we
may assume that (Aλ, Cλ, Dλ) → (A,C,D) uniformly, where A, C, and D satisfy
Axx = Cxx = Dxx = 0, and Ax = Cx = Dx = 0 at x = −1, 1. Therefore A, C, D
are all nonnegative constants. Passing to the limit in (62) (with Ã being replaced by
Aλ), we have A = Â. Similarly we can show that Ĉ = C and D̂ = D. Since the limit
(Â, Ĉ, D̂) is unique, the convergence (Aλ, Cλ, Dλ) → (Â, Ĉ, D̂) is true for the whole
sequence, and the limit is uniform in x.

Lemma A.2. There exists some constant δ1 > 0 such that if 0 < λ ≤ δ1,
(26)–(29) has a unique positive solution.

Proof. Set X = {u ∈ C[−1, 1] :
∫ 1

−1
u(x) dx = 0}, Z = {u ∈ X : u,x(−1) =

u,x(1) = 0}, and define the projection operator P : C[−1, 1] → X by Pu = u −∫ 1

−1
u(x) dx. For (λ,A0, a0, C0, c0, D0, d0) ∈ R1 × (Z × R1)3, define F : R1 × (Z ×
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R1)3 → (X ×R1)3 by

F (λ,A0, a0, C0, c0, D0, d0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ρLA0,xx + λPF+
1 (x,A0 + a0, C0 + c0, D0 + d0)

∫ 1

−1
F+

1 (x,A0 + a0, C0 + c0, D0 + d0) dx

ρLSC0,xx + λPF2(x,A0 + a0, C0 + c0, D0 + d0)

∫ 1

−1
F2(x,A0 + a0, C0 + c0, D0 + d0) dx

ρSD0,xx + λPF3(x,A0 + a0, C0 + c0, D0 + d0)

∫ 1

−1
F3(x,A0 + a0, C0 + c0, D0 + d0) dx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(67)

By the definition of Â, Ĉ, D̂, F (0, Â, Ĉ, D̂, 0, 0, 0) = (0, 0, 0, 0, 0, 0). The Fréchet
derivative of F with respect to (A0, a0, C0, c0, D0, d0) at (λ,A0, a0, C0, c0, D0, d0) =
(0, Â, 0, Ĉ, 0, D̂, 0) is given by

D(A0,a0,C0,c0,D0,d0)F
∣∣
(0,Â,0,Ĉ,0,D̂,0)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ρL
d2

dx2 0 0 0 0 0

0 ρLS
d2

dx2 0 0 0 0

0 0 ρS
d2

dx2 0 0 0
∗ ∗ ∗
∗ ∗ ∗ M3×3

∗ ∗ ∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(68)

where M3×3 is the 3 × 3 matrix

⎛
⎜⎜⎜⎜⎜⎝

∫ 1

−1

[
−gLhL(fL+gL)

(fL+gL+hLÂ)2
− hLSD̂

] ∫ 1

−1
(fLS + τgLS) −(

∫ 1

−1
hLS)Â

(
∫ 1

−1
hLS)D̂ −

∫ 1

−1
(fLS + gLS) (

∫ 1

−1
hLS)Â

−(
∫ 1

−1
hLS)D̂

∫ 1

−1
fLS −(

∫ 1

−1
hLS)Â

⎞
⎟⎟⎟⎟⎟⎠ .(69)

Since the operator d2

dx2 , subject to the no flux boundary condition, is an isomor-
phism from Z to X, we see that the operator D(A0,a0,C0,c0,D0,d0)F

∣∣
(0,Â,0,Ĉ,0,D̂,0)

is

invertible from (Z × R1)3 to (X × R1)3 if and only if the matrix M3×3 is invertible.
It is straightforward to check that the determinant of M3×3 is equal to

(∫ 1

−1

hLS

)
D̂ ·

∫ 1

−1

(fLS + gLS) ·
(∫ 1

−1

hLS

)
Â (1 − γ2)(−γ1),(70)

where γ1, γ2 are defined as

γ1 =

∫ 1

−1
gLhL(fL+gL)

(fL+gL+hLÂ)2(∫ 1

−1
hLS

)
D̂

, γ2 =

∫ 1

−1
fLS∫ 1

−1
(fLS + gLS)

.(71)
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Since γ1 > 0 and 0 < γ2 < 1, M3×3 is nondegenerate.
By the implicit function theorem, there exists δ2 > 0 such that if 0 < λ ≤ δ2, there

is a unique solution to F = 0, denoted by (Aλ(x), aλ(x), Cλ(x), cλ(x), Dλ(x), dλ(x)),
in some neighborhood of (Â, 0, Ĉ, 0, D̂, 0). As λ → 0+, (Aλ, aλ, Cλ, cλ, Dλ, dλ) →
(Â, 0, Ĉ, 0, D̂, 0) uniformly. In particular, for 0 < λ ≤ δ2, (Aλ+aλ, Cλ+cλ, Dλ+dλ) is
the unique positive solution of (26)–(29) in some neighborhood of (Â, Ĉ, D̂). This and
Lemma A.1 imply that, for 0 < λ 
 1, (26)–(29) has a unique positive solution.

Lemma A.3. Let (A∗, C∗, D∗) denote the unique positive solution of (26)–(29)
for 0 < λ 
 1. Then for 0 < λ 
 1, the Fréchet derivative of T (λ) with respect
to (Ã, C̃, D̃) at (A∗, C∗, D∗), denoted by D(Ã,C̃,D̃)T (λ)

∣∣
(A∗,C∗,D∗)

, has no eigenvalue

greater than or equal to 1.
Proof. By (35), D(Ã,C̃,D̃)T (λ)

∣∣
(A∗,C∗,D∗)

(ϕ1, ϕ2, ϕ3) is given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

L−1
ρL

{[
1 + λ∂F1

∂Ã
(x,A∗, C∗, D∗)

]
ϕ1 + λ∂F1

∂C̃
ϕ2 + λ∂F1

∂D̃
ϕ3

}

L−1
ρLS

{
λ∂F2

∂Ã
ϕ1 +

[
1 + λ∂F2

∂C̃

]
ϕ2 + λ∂F2

∂D̃
ϕ3

}

L−1
ρS

{
λ∂F3

∂Ã
ϕ1 + λ∂F3

∂C̃
ϕ2 +

[
λ∂F3

∂D̃
+ 1

]
ϕ3

}

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where ∂Fi

∂Ã
, ∂Fi

∂C̃
, ∂Fi

∂D̃
(i = 1, 2, 3) are evaluated at (x,A∗, C∗, D∗).

We argue by contradiction: suppose that Lemma A.3 fails. Passing to a subse-
quence if necessary, we may assume that for 0 < λ 
 1 the operator
D(Ã,C̃,D̃)T (λ)|(A∗,C∗,D∗) has eigenvalue μ = μ(λ) ≥ 1, with the corresponding eigen-

function (ϕ1, ϕ2, ϕ3) normalized by ‖ϕ1‖L∞+‖ϕ2‖L∞+‖ϕ3‖L∞ = 1. Then (ϕ1, ϕ2, ϕ3)
satisfies

−μρL
d2ϕ1

dx2
+ (μ− 1)ϕ1 = λ

[
∂F1

∂Ã
ϕ1 +

∂F1

∂C̃
ϕ2 +

∂F1

∂D̃
ϕ3

]
,(72)

−μρLS
d2ϕ2

dx2
+ (μ− 1)ϕ2 = λ

[
∂F2

∂Ã
ϕ1 +

∂F2

∂C̃
ϕ2 +

∂F2

∂D̃
ϕ3

]
,(73)

−μρS
d2ϕ3

dx2
+ (μ− 1)ϕ3 = λ

[
∂F3

∂Ã
ϕ1 +

∂F3

∂C̃
ϕ2 +

∂F3

∂D̃
ϕ3

]
,(74)

(ϕ1),x = (ϕ2),x = (ϕ3),x = 0 at x = −1, 1,(75)

where ∂Fi

∂Ã
, ∂Fi

∂C̃
, ∂Fi

∂D̃
(i = 1, 2, 3) in (72)–(74) are evaluated at (Ã, C̃, D̃) = (A∗, C∗, D∗).

It is easy to see that μ(λ) → 1 as λ → 0+, and the corresponding eigenfunctions
(ϕ1, ϕ2, ϕ3) → (ϕ1, ϕ2, ϕ3) uniformly, where (ϕ1, ϕ2, ϕ3) are constants satisfying |ϕ1|+
|ϕ2|+|ϕ3| = 1. Set μ(λ) = 1+λμ1(λ). Since μ(λ) ≥ 1, we have μ1(λ) ≥ 0. Integrating
(72)–(74), we get

∫ 1

−1

[
∂F1

∂Ã
− μ1

]
ϕ1 +

∫ 1

−1

∂F1

∂C̃
ϕ2 +

∫ 1

−1

∂F1

∂D̃
ϕ3 = 0,(76)
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∫ 1

−1

∂F2

∂Ã
ϕ1 +

∫ 1

−1

[
∂F2

∂C̃
− μ1

]
ϕ2 +

∫ 1

−1

∂F2

∂D̃
ϕ3 = 0,(77)

∫ 1

−1

∂F3

∂Ã
ϕ1 +

∫ 1

−1

∂F3

∂C̃
ϕ2 +

∫ 1

−1

[
∂F3

∂D̃
− μ1

]
ϕ3 = 0.(78)

We first prove that μ1(λ) is uniformly bounded for all 0 < λ 
 1. If not, passing
to a subsequence if necessary, we may assume that as λ → 0+, μ1(λ) → +∞. Divide
(76) by μ1; passing to the limit, we find that ϕ1 = 0. Similarly, ϕ2 = ϕ3 = 0. However,
this contradicts |ϕ1| + |ϕ2| + |ϕ3| = 1. Therefore μ1(λ) is nonnegative and uniformly
bounded. Passing to a subsequence if necessary, we may assume that μ1(λ) → μ1 ≥ 0
as λ → 0+.

Passing to the limit in (76)–(78), by Lemma A.1, (M3×3 − μ1I3×3)(ϕ1, ϕ2, ϕ3) =
(0, 0, 0). Since (ϕ1, ϕ2, ϕ3) �= (0, 0, 0), |M3×3−μ1I3×3| = 0. However, direct calculation
yields that |M3×3 − μ1I3×3| is equal to

−
(∫ 1

−1

hLS

)
D̂ ·

∫ 1

0

(fLS + gLS) ·
(∫ 1

−1

hLS

)
Â

·
{(

γ1 +
μ1

(
∫ 1

−1
hLS)D̂

)
·
(

1 +
μ1∫ 1

−1
(fLS + gLS)

)
· μ1

(
∫ 1

−1
hLS)Â

+

[
(1 − τ)(1 − γ2) +

μ1∫ 1

−1
(fLS + gLS)

]
· μ1∫ 1

−1
hLSÂ

+

(
γ1 +

μ1

(
∫ 1

−1
hLS)D̂

)
·
(

1 − γ2 +
μ1∫ 1

−1
(fLS + gLS)

)}
,

which is negative since μ1 ≥ 0, γ1 > 0, 0 ≤ τ ≤ 1, and γ2 < 1. Contradiction! This
completes the proof of Lemma A.3.

Proof of Proposition 3.5. By Lemma A.2, for 0 < λ 
 1, T (λ) has a unique
fixed point. By Lemma A.3, 1 is not an eigenvalue of D(Ã,C̃,D̃)T (λ)|(A∗,C∗,D∗). Hence

deg
(
I − T (λ), Ω, (0, 0, 0)

)
= (−1)β , where β is the number of eigenvalues (counting

algebraic multiplicity) of D(Ã,C̃,D̃)T (λ)|(A∗,C∗,D∗), which is greater than 1. By Lemma

A.3 we see that β = 0. Hence deg(I − T (λ),Ω, (0, 0, 0)) = 1 for 0 < λ 
 1.
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