Problem 1. (§2.3: 10)

Spherical curves. Let α be a unit-speed curve with $\kappa>0, \tau \neq 0$.
(a) If α lies on a sphere of center \mathbf{c} and radius r, show that

$$
\alpha-\mathbf{c}=-\rho N-\rho^{\prime} \sigma B
$$

where $\rho=1 / \kappa$ and $\sigma=1 / \tau$. Thus $r^{2}=\rho^{2}+\left(\rho^{\prime} \sigma\right)^{2}$.
(b) Conversely, if $r^{2}=\rho^{2}+\left(\rho^{\prime} \sigma\right)^{2}$ has constant value r^{2} and $\rho^{\prime} \neq 0$, show that α lies on a sphere of radius r.

Solution: Assume that α is on the sphere of radius r. Then we have $\|\alpha-\mathbf{c}\|^{2}=r^{2}$.
Taking the derivative, we get

$$
(\alpha-\mathbf{c}) \cdot \alpha^{\prime}=(\alpha-\mathbf{c}) \cdot T=0
$$

Thus we can write $\alpha-\mathbf{c}$ as a linear combination of N and B :

$$
\alpha-\mathbf{c}=a N+b B
$$

where a, b are functions of t. Taking the derivative again and using the Frenet formulas, we get

$$
T=\alpha^{\prime}=a^{\prime} N+a N^{\prime}+b^{\prime} B+b B^{\prime}=a^{\prime} N+a(-\kappa T+\tau B)+b^{\prime} B-b \tau N
$$

From the above equation, we get the following equations

$$
1+a \kappa=0, \quad a^{\prime}-b \tau=0, \quad a \tau+b^{\prime}=0
$$

We therefore have

$$
a=-\rho, \quad b=-\rho^{\prime} \sigma
$$

Thus

$$
\|\alpha-\mathbf{c}\|^{2}=\rho^{2}+\left(\rho^{\prime} \sigma\right)^{2}=r^{2}
$$

Conversely, if

$$
\alpha-\mathbf{c}=-\rho N-\rho^{\prime} \sigma B
$$

then

$$
\|\alpha-\mathbf{c}\|^{2}=\rho^{2}+\left(\rho^{\prime} \sigma\right)^{2}=r^{2}
$$

so α is on the sphere of radius r.

Problem 2. (§2.3: 11)

Let $\beta, \bar{\beta}: I \rightarrow \mathbb{R}^{3}$ be unit-speed curves with nonvanishing curvature and torsion. If $T=\bar{T}$, then β and $\bar{\beta}$ are parallel (Ex. 10 of Sec. 2). If $B=\bar{B}$, prove that $\bar{\beta}$ is parallel to either β or the curve $s \mapsto-\beta(s)$.

Solution: We consider $(\beta(s)-\bar{\beta}(s))^{\prime}=T-\bar{T}=0$. Thus $\beta(s)-\bar{\beta}(s)=\mathbf{c}$ is a constant. Thus β and $\bar{\beta}$ are parallel.

If $B=\bar{B}$, then $B^{\prime}=\bar{B}^{\prime}$ and hence

$$
-\tau N=-\bar{\tau} \bar{N}
$$

Thus since both N and \bar{N} are unit vectors, we must have

$$
N= \pm \bar{N}, \quad \tau= \pm \bar{\tau}
$$

Thus we have

$$
-\kappa T+\tau B=N^{\prime}=\bar{N}^{\prime}=-\bar{\kappa} \bar{T}+\bar{\tau} \bar{B}
$$

From the above, we conclude that $T=\bar{T}$. Thus β is either parallel to $\bar{\beta}$ or $-\bar{\beta}$.

Problem 3. (§2.4: 1)

Express the curvature and torsion of the curve $\alpha(t)=(\cosh t, \sinh t, t)$ in terms of arc length s measured from $t=0$.

Solution: We have

$$
\begin{aligned}
& \alpha^{\prime}=(\sinh t, \cosh t, 1) \\
& \alpha^{\prime \prime}=(\cosh t, \sinh t, 0) \\
& \alpha^{\prime \prime \prime}=(\sinh t, \cosh t, 0)
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
& \left\|\alpha^{\prime}\right\|=\sqrt{2} \cosh t \\
& \alpha^{\prime} \times \alpha^{\prime \prime}=(-\sinh t, \cosh t,-1) \\
& \left\|\alpha^{\prime} \times \alpha^{\prime \prime}\right\|=\sqrt{2} \cosh t \\
& \left(\alpha^{\prime} \times \alpha^{\prime \prime}\right) \cdot \alpha^{\prime \prime \prime}=1
\end{aligned}
$$

We then have

$$
\kappa=\tau=\frac{1}{2 \cosh ^{2} t}
$$

In order to find the arc-length reparametrization, we solve the differential equation

$$
s^{\prime}(t)=\left\|\alpha^{\prime}(t)\right\|=\sqrt{2} \cosh t, \quad s(0)=0
$$

We then have

$$
s(t)=\sqrt{2} \sinh t
$$

Therefore

$$
\kappa(s)=\tau(s)=\frac{1}{2 \cosh ^{2} t}=\frac{1}{2+s^{2}}
$$

Problem 4. (§2.4: 4)

Show that the curvature of a regular curve in \mathbb{R}^{3} is given by

$$
\kappa^{2} \nu^{4}=\left\|\alpha^{\prime \prime}\right\|^{2}-(d \nu / d t)^{2}
$$

Solution: Since $\nu=d s / d t$, we have

$$
\frac{d \nu}{d t}=\frac{d}{d t} \sqrt{\alpha^{\prime} \cdot \alpha^{\prime}}=\frac{\alpha^{\prime} \cdot \alpha^{\prime \prime}}{\sqrt{\alpha^{\prime} \cdot \alpha^{\prime}}}=\frac{\alpha^{\prime} \cdot \alpha^{\prime \prime}}{\left\|\alpha^{\prime}\right\|} .
$$

We use the identity

$$
\left\|\alpha^{\prime}\right\|^{2} \cdot\left\|\alpha^{\prime \prime}\right\|^{2}=\left(\alpha^{\prime} \cdot \alpha^{\prime \prime}\right)^{2}+\left\|\alpha^{\prime} \times \alpha^{\prime \prime}\right\|^{2}
$$

to get

$$
\left\|\alpha^{\prime \prime}\right\|^{2}-(d \nu / d t)^{2}=\frac{\left\|\alpha^{\prime} \times \alpha^{\prime \prime}\right\|^{2}}{\left\|\alpha^{\prime}\right\|^{2}}
$$

The formula for the curvature follows from the above result.

Problem 5. (§2.4: 5)

If α is a curve with constant speed $c>0$, show that

$$
\begin{array}{ll}
T=\alpha^{\prime} / c, & N=\alpha^{\prime \prime} /\left\|\alpha^{\prime \prime}\right\|, \quad B=\alpha^{\prime} \times \alpha^{\prime \prime} /\left(c\left\|\alpha^{\prime \prime}\right\|\right) \\
\kappa=\frac{\left\|\alpha^{\prime \prime}\right\|}{c^{2}}, & \tau=\frac{\left(\alpha^{\prime} \times \alpha^{\prime \prime}\right) \cdot \alpha^{\prime \prime \prime}}{c^{2}\left\|\alpha^{\prime \prime}\right\|^{2}}
\end{array}
$$

Solution: These formulas follows from a straightforward computation.

Problem 6. (§2.4: 6)

(a). If α is a cylindrical helix, prove that its unit vector \mathbf{u} (Thm. 4.5) is

$$
\mathbf{u}=\frac{\tau}{\sqrt{\kappa^{2}+\tau^{2}}} T+\frac{\kappa}{\sqrt{\kappa^{2}+\tau^{2}}} B
$$

and the coefficients here are $\cos \theta$ and $\sin \theta(f o r \theta$ as in Def. 4.5).
(b). Check (a) for the cylindrical helix in Example 4.2 of Chapter 1.

Solution: I think \mathbf{u} should be

$$
\mathbf{u}= \pm\left(\frac{\tau}{\sqrt{\kappa^{2}+\tau^{2}}} T+\frac{\kappa}{\sqrt{\kappa^{2}+\tau^{2}}} B\right)
$$

Since $T \cdot \mathbf{u}$ is a constant, we know that $N \cdot \mathbf{u}=0$ by taking derivative. Thus we can write

$$
\mathbf{u}=a T+b B
$$

where a is a constant, and b is a function. Taking derivative on both sides, we get

$$
0=a \kappa N+b^{\prime} B-b \tau N
$$

Thus $b^{\prime}=0$ and b must be a constant as well. We also have $a \kappa=b \tau$. since \mathbf{u} is unit,
we must have $a^{2}+b^{2}=1$. Solve these twp equations, we have

$$
a= \pm \frac{\tau}{\sqrt{\kappa^{2}+\tau^{2}}}, \quad b= \pm \frac{\kappa}{\sqrt{\kappa^{2}+\tau^{2}}} .
$$

(b). For the curve

$$
\alpha(t)=(a \cos t, a \sin t, b t)
$$

in Example 4.2 of Chapter 1, we compute

$$
\begin{aligned}
& \alpha^{\prime}=(-a \sin t, a \cos t, b) \\
& \alpha^{\prime \prime}=(-a \cos t,-a \sin t, 0) \\
& \alpha^{\prime \prime \prime}=(a \sin t,-a \cos t, 0)
\end{aligned}
$$

We then have

$$
\alpha^{\prime} \times \alpha^{\prime \prime}=a(b \sin t,-b \cos t, a)
$$

Using the formulas in the above problem, we obtain

$$
\kappa=\frac{a}{a^{2}+b^{2}}, \quad \tau=\frac{b}{a^{2}+b^{2}} .
$$

Let $c=\sqrt{a^{2}+b^{2}}$. Since

$$
T=\frac{1}{c}(-a \sin t, a \cos t, b), \quad B=\frac{1}{c}(b \sin t,-b \cos t, a),
$$

we have

$$
\mathbf{u}=\frac{b}{c} T+\frac{a}{c} B=(0,0,1)
$$

We thus verify that

$$
T \cdot \mathbf{u}=\frac{b}{c}
$$

is a constant.

Problem 7. (§2.4: 12)
If $\alpha(t)=(x(t), y(t))$ is a regular curve in \mathbb{R}^{2}, show that its plane curvature (Ex. 8 of Sec. 3) is given by

$$
\tilde{\kappa}=\frac{\alpha^{\prime \prime} \cdot J\left(\alpha^{\prime}\right)}{\nu^{3}}=\frac{x^{\prime} y^{\prime \prime}-x^{\prime \prime} y^{\prime}}{\left(\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}\right)^{3 / 2}}
$$

Solution: By definition,

$$
T=\frac{\alpha^{\prime}}{\left\|\alpha^{\prime}\right\|}, \quad \tilde{N}=J(T)
$$

We know that

$$
T^{\prime}=\frac{\alpha^{\prime \prime}}{\left\|\alpha^{\prime}\right\|}-\frac{\left(\alpha^{\prime} \cdot \alpha^{\prime \prime}\right) \alpha^{\prime}}{\left\|\alpha^{\prime}\right\|^{3}}
$$

We thus have

$$
\tilde{\kappa}=\nu^{-1} T^{\prime} \cdot J(T)=\frac{1}{\nu^{3}}\left(\alpha^{\prime \prime}-\frac{\left(\alpha^{\prime} \cdot \alpha^{\prime \prime}\right) \alpha^{\prime}}{\left\|\alpha^{\prime}\right\|^{2}}\right) \cdot J\left(\alpha^{\prime}\right)=\frac{\alpha^{\prime \prime} \cdot J\left(\alpha^{\prime}\right)}{\nu^{3}} .
$$

Since $\alpha^{\prime}=\left(x^{\prime}, y^{\prime}\right)$, we have $J\left(\alpha^{\prime}\right)=\left(-y^{\prime}, x^{\prime}\right)$. Also, we have $\alpha^{\prime \prime}=\left(x^{\prime \prime}, y^{\prime \prime}\right)$.
So the second formula follows.

Problem 8. (§2.5: 1)

Consider the tangent vector $\mathbf{v}=(1,-1,2)$ at the point $\mathbf{p}=(1,3,-1)$. Compute $\nabla_{\mathbf{v}} W$ directly from the definition, where
(a) $W=x^{2} U_{1}+y U_{2}$,
(b) $W=x U_{1}+x^{2} U_{2}-z^{2} U_{3}$.

Solution: (a). We have

$$
W(\mathbf{p}+t \mathbf{v})=(1+t)^{2} U_{1}+(3-t) U_{2} .
$$

Thus

$$
\nabla_{\mathbf{v}} W=\left.\frac{d}{d t}\right|_{t=0}(1+t)^{2} U_{1}+(3-t) U_{2}=2 U_{1}-U_{2}
$$

(b). We have

$$
W(\mathbf{p}+t \mathbf{v})=(1+t) U_{1}+(1+t)^{2} U_{2}-(-1+2 t)^{2} U_{3} .
$$

Thus

$$
\nabla_{\mathbf{v}} W=\left.\frac{d}{d t}\right|_{t=0}(1+t) U_{1}+(1+t)^{2} U_{2}-(-1+2 t)^{2} U_{3}=U_{1}+2 U_{2}+4 U_{3}
$$

Problem 9. (§2.5: 3)

If W is a vector field with constant length $\|W\|$, prove that for any vector field V, the covariant derivative $\nabla_{V} W$ is everywhere orthogonal to W.

Solution: Since $W \cdot W=c$, we must have

$$
\nabla_{V} W \cdot W+W \cdot \nabla_{V} W=0
$$

Thus $\nabla_{V} W$ is always orthogonal to W.

