
Math 162A, Differential Geometry Homework 6, due 2/16/2021

Problem 1. (§2.3: 10)

Spherical curves. Let α be a unit-speed curve with κ > 0, τ 6= 0.

(a) If α lies on a sphere of center c and radius r, show that

α− c = −ρN − ρ′σB,

where ρ = 1/κ and σ = 1/τ . Thus r2 = ρ2 + (ρ′σ)2.

(b) Conversely, if r2 = ρ2 + (ρ′σ)2 has constant value r2 and ρ′ 6= 0, show that α lies

on a sphere of radius r.

Solution: Assume that α is on the sphere of radius r. Then we have ‖α− c‖2 = r2.

Taking the derivative, we get

(α− c) · α′ = (α− c) · T = 0.

Thus we can write α− c as a linear combination of N and B:

α− c = aN + bB,

where a, b are functions of t. Taking the derivative again and using the Frenet formulas,

we get

T = α′ = a′N + aN ′ + b′B + bB′ = a′N + a(−κT + τB) + b′B − bτN.

From the above equation, we get the following equations

1 + aκ = 0, a′ − bτ = 0, aτ + b′ = 0.

We therefore have

a = −ρ, b = −ρ′σ.

Thus

‖α− c‖2 = ρ2 + (ρ′σ)2 = r2.

Conversely, if

α− c = −ρN − ρ′σB,

then

‖α− c‖2 = ρ2 + (ρ′σ)2 = r2.

so α is on the sphere of radius r.

�

Problem 2. (§2.3: 11)

Let β, β̄ : I → R3 be unit-speed curves with nonvanishing curvature and torsion. If

T = T̄ , then β and β̄ are parallel (Ex. 10 of Sec. 2). If B = B̄, prove that β̄ is parallel

to either β or the curve s 7→ −β(s).
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Solution: We consider (β(s) − β̄(s))′ = T − T̄ = 0. Thus β(s) − β̄(s) = c is a

constant. Thus β and β̄ are parallel.

If B = B̄, then B′ = B̄′ and hence

−τN = −τ̄ N̄ .

Thus since both N and N̄ are unit vectors, we must have

N = ±N̄ , τ = ±τ̄ .

Thus we have

−κT + τB = N ′ = N̄ ′ = −κ̄T̄ + τ̄ B̄.

From the above, we conclude that T = T̄ . Thus β is either parallel to β̄ or −β̄. �

Problem 3. (§2.4: 1)

Express the curvature and torsion of the curve α(t) = (cosh t, sinh t, t) in terms of arc

length s measured from t = 0.

Solution: We have

α′ = (sinh t, cosh t, 1),

α′′ = (cosh t, sinh t, 0),

α′′′ = (sinh t, cosh t, 0).

Thus we have

‖α′‖ =
√

2 cosh t,

α′ × α′′ = (− sinh t, cosh t,−1),

‖α′ × α′′‖ =
√

2 cosh t,

(α′ × α′′) · α′′′ = 1.

We then have

κ = τ =
1

2 cosh2 t
.

In order to find the arc-length reparametrization, we solve the differential equation

s′(t) = ‖α′(t)‖ =
√

2 cosh t, s(0) = 0.

We then have

s(t) =
√

2 sinh t.

Therefore

κ(s) = τ(s) =
1

2 cosh2 t
=

1

2 + s2
.

�
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Problem 4. (§2.4: 4)

Show that the curvature of a regular curve in R3 is given by

κ2ν4 = ‖α′′‖2 − (dν/dt)2.

Solution: Since ν = ds/dt, we have
dν

dt
=

d

dt

√
α′ · α′ = α′ · α′′√

α′ · α′
=
α′ · α′′

‖α′‖
.

We use the identity

‖α′‖2 · ‖α′′‖2 = (α′ · α′′)2 + ‖α′ × α′′‖2,

to get

‖α′′‖2 − (dν/dt)2 =
‖α′ × α′′‖2

‖α′‖2
.

The formula for the curvature follows from the above result.

�

Problem 5. (§2.4: 5)

If α is a curve with constant speed c > 0, show that

T = α′/c, N = α′′/‖α′′‖, B = α′ × α′′/(c‖α′′‖),

κ =
‖α′′‖
c2

, τ =
(α′ × α′′) · α′′′

c2‖α′′‖2
.

Solution: These formulas follows from a straightforward computation. �

Problem 6. (§2.4: 6)

(a). If α is a cylindrical helix, prove that its unit vector u (Thm. 4.5) is

u =
τ√

κ2 + τ2
T +

κ√
κ2 + τ2

B

and the coefficients here are cos θ and sin θ (for θ as in Def. 4.5).

(b). Check (a) for the cylindrical helix in Example 4.2 of Chapter 1.

Solution: I think u should be

u = ±
(

τ√
κ2 + τ2

T +
κ√

κ2 + τ2
B

)
.

Since T · u is a constant, we know that N · u = 0 by taking derivative. Thus we can

write

u = a T + bB,

where a is a constant, and b is a function. Taking derivative on both sides, we get

0 = aκN + b′B − bτ N.

Thus b′ = 0 and b must be a constant as well. We also have aκ = bτ . since u is unit,
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we must have a2 + b2 = 1. Solve these twp equations, we have

a = ± τ√
κ2 + τ2

, b = ± κ√
κ2 + τ2

.

(b). For the curve

α(t) = (a cos t, a sin t, bt)

in Example 4.2 of Chapter 1, we compute

α′ = (−a sin t, a cos t, b),

α′′ = (−a cos t,−a sin t, 0),

α′′′ = (a sin t,−a cos t, 0).

We then have

α′ × α′′ = a(b sin t,−b cos t, a).

Using the formulas in the above problem, we obtain

κ =
a

a2 + b2
, τ =

b

a2 + b2
.

Let c =
√
a2 + b2. Since

T =
1

c
(−a sin t, a cos t, b), B =

1

c
(b sin t,−b cos t, a),

we have

u =
b

c
T +

a

c
B = (0, 0, 1).

We thus verify that

T · u =
b

c

is a constant.

�

Problem 7. (§2.4: 12)

If α(t) = (x(t), y(t)) is a regular curve in R2, show that its plane curvature (Ex. 8 of

Sec. 3) is given by

κ̃ =
α′′ · J(α′)

ν3
=

x′y′′ − x′′y′

((x′)2 + (y′)2)3/2
.

Solution: By definition,

T =
α′

‖α′‖
, Ñ = J(T ).

We know that

T ′ =
α′′

‖α′‖
− (α′ · α′′)α′

‖α′‖3
.

We thus have

κ̃ = ν−1T ′ · J(T ) =
1

ν3

(
α′′ − (α′ · α′′)α′

‖α′‖2

)
· J(α′) =

α′′ · J(α′)

ν3
.
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Since α′ = (x′, y′), we have J(α′) = (−y′, x′). Also, we have α′′ = (x′′, y′′).

So the second formula follows.

�

Problem 8. (§2.5: 1)

Consider the tangent vector v = (1,−1, 2) at the point p = (1, 3,−1). Compute ∇vW

directly from the definition, where

(a) W = x2U1 + yU2,

(b) W = xU1 + x2U2 − z2U3.

Solution: (a). We have

W (p + tv) = (1 + t)2U1 + (3− t)U2.

Thus

∇vW =
d

dt

∣∣∣∣
t=0

(1 + t)2U1 + (3− t)U2 = 2U1 − U2.

(b). We have

W (p + tv) = (1 + t)U1 + (1 + t)2 U2 − (−1 + 2t)2 U3.

Thus

∇vW =
d

dt

∣∣∣∣
t=0

(1 + t)U1 + (1 + t)2U2 − (−1 + 2t)2U3 = U1 + 2U2 + 4U3.

�

Problem 9. (§2.5: 3)

If W is a vector field with constant length ‖W‖, prove that for any vector field V , the

covariant derivative∇VW is everywhere orthogonal toW .

Solution: SinceW ·W = c, we must have

∇VW ·W +W · ∇VW = 0.

Thus∇VW is always orthogonal toW . �
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