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0.1 Vector Spaces

Definition 0.1. Vector Space

A vector space V is a nonempty set with two binary operations “+” and scalar multi-

plication “·” satisfying the following eight axioms: let u,v,w ∈ V and r, s ∈ R, we

have

u + v = v + u;

u + (v + w) = (u + v) + w;

0 + u = u + 0 = u for a vector called 0;

(rs) · u = r · (s · u);

(r + s) · u = r · u + s · u;
r · (u + v) = r · u + r · v;
0 · u = 0;

1 · u = u.

As is well-known, the set V satisfying the first three axioms form an Abel semi-group.

The existence of the inverse of a vector u can be verified by using the scalar multiplication.

Let u be a vector, we claim that (−1) · u is the inverse of u because

u + (−1) · u = (1 + (−1)) · u = 0.

Similarly, we can define the subtraction by

u− v = u + (−1) · v.
�

Note We sometimes omit the · and write, for example, ru for r · u.
External Link. Here is the video explanation of vector space (linear indepedence).

Useful!
External Link. Here is the Math 162A pre-requisite videos.

In linear algebra, we restrict ourselves to finite dimensional vector space. But, a lot of

results in finite dimensional case can be extended to infinite dimensional case as well as abstract

vector space cases.

https://www.math.uci.edu/~prerequisite-videos/MATH%203D%20Content/5%20Linear%20Independence/Linear%20Independence%20video.mp4
https://www.math.uci.edu/~prerequisite-videos/162a.html


0.1 Vector Spaces

In the following, we give some examples of vector spaces.

Example 0.1 Rn, the n-dimensional Euclidean space, is the set of all n-vectors

Rn =

 x =


x1
...

xn

 | xi ∈ R

 .

Example 0.2 The set of allm× n matrices for an (mn)-dimensional vector space.

Example 0.3 The space of polynomials of degree no more than n, where n is a nonnegative

integer, is a vector space.

A single-variable polynomial of degree no more than n can be expressed as

p(t) = a0 + a1t+ · · ·+ ant
n.

Let

q(t) = b0 + b1t+ · · ·+ bnt
n

be another polynomial. Define the addition to be

(p+ q)(t) = (a0 + b0) + (a1 + b1)t+ · · ·+ (an + bn)tn,

and the scalar multipliction to be: let λ ∈ R

(λp)(t) = (λa0) + (λa1)t+ · · ·+ (λan)tn.

With respect to the addition and scalar multiplication, the space is a vector space.

In the above two examples, the dimensions of the vector spaces are finite. Let’s show some

examples of infinite dimensional vector spaces.
�

Note The set of all polynomials of degree equal to n is not a vector space.

Example 0.4Moreover, the space of all real-valued functions on a set is a (infinite dimensional)

vector space.

Let’s recall the definition of a function.

Definition 0.2

A function f : X → Y is a triple (f,X, Y ), whereX,Y are sets, and f is an assignment,

or a rule, that for any element x in X , there is a unique y = f(x) in Y attached to it.

X is called the domain of f , and Y is called the codomain of f . The range is the subset

of the codomain Y consists of all f(x) when X is running through X . The assignment

sometimes is written as x 7→ f(x). Thus a complete description of a function can be given

as

f : X → Y, x 7→ f(x).

u

v
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0.2 Inner Product

As above, we can define the addition and scalar multiplication as

(f + g)(x) = f(x) + g(x), (λf)(x) = λf(x).

Remark The vector space we study in differential geometry are the “abstract” vector space,

which is on the contrary to the vector spaces we studied in Math 3A.

The following concepts are defined in abstract vector spaces similar to those in Rn.

1. linear combination, span;

2. linear dependence and independence;

3. basis and dimension.

Remark In infinite dimensional space, a basis is defined by a set of vectors

I = {v1,v2, · · · ,vn, · · · }

satisfying the following

1. any finite subset of I is linearly independent;

2. any element can be expressed as a (finite) linear combination of element in I.

Let (V,+, ·) be a vector space. We can endow geometric structure onto it by defining the

concept of inner product.

Remark Let

S = {v1,v2, · · · ,vn}

be a finite set. Let

V = SpanS = Span {v1,v2, · · · ,vn}.

Then we say S spans V , and S is a spanning set of V .

0.2 Inner Product

The addition and scalar multiplication define the algebraic structure of a vector space. In

order to introduce geometry to linear algebra, we can endow geometric structure onto it by

defining the concept called inner product.

Definition 0.3

An inner product on a vector space V is a function 〈 , 〉

V × V → R

satisfying the following properties: let u,v,w ∈ V and r, s ∈ R, we have

(a). 〈u,v〉 = 〈v,u〉 Symmetry

(b). 〈u, rv + sw〉 = r〈u,v〉+ s〈u,w〉 Linearity

(c).〈u,u〉 ≥ 0 and equality is true if and only if u = 0 Positivity

Once we introduce the inner product, we introduce geometry into vector space. For example
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0.2 Inner Product

Definition 0.4
(Length of a vector) We can define the length, or the norm, of a vector to be

‖u‖ =
√
〈u,u〉.

(Distance) Let u,v be two vectors. Then their distance is defined to be

dist(u,v) = ‖u− v‖ =
√
〈u− v,u− v〉.

Note in the definition of distance, we used both the geometric structure (inner product) and

algebraic structrue (subtraction is defined by u− v = u + (−1) · v).
Example 0.5 In R3 (and in Rn), the ordinary dot product

〈(a1, a2, a3), (b1, b2, b3)〉 = a1b1 + a2b2 + a3b3

is an inner product.

However, there are many other ways one can define inner product on R3. For example, we

can define

〈(a1, a2, a3), (b1, b2, b3)〉 = 2a1b1 + 3a2b2 + 4a3b3.

It is an inner product. In general, let

R =


r11 r12 r13

r21 r22 r23

r31 r32 r33


be a positive definite matrix. Then

〈(a1, a2, a3), (b1, b2, b3)〉 =
3∑

i,j=1

rija
ibj

is an inner product.

Example 0.6 We let R[t] be the vector space of all polynomials. Define the inner product

〈p, q〉 =

∫ 1

−1
p(x)q(x) dx

More general, if ρ(x) > 0 be a positive continuous function, then

〈p, q〉 =

∫ 1

−1
p(x)q(x)ρ(x) dx

is an inner product.

One of the most important inequality in mathematics is called the Cauchy-Schwarz Inequal-

ity.

Theorem 0.1

♥

Let u,v be two vectors. Then we have

|〈u,v〉| ≤ ‖u‖ · ‖v‖,

and the equality holds if and only if u,v are linearly dependent.
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0.3 Linear Transformation

Proof. This is the standard proof. Let t be a real number. Then by the positivity of

the inner product, we have

〈u + tv,u + tv〉 ≥ 0.

Using the linearity, we get

t2〈v,v〉+ 2t〈u,v〉+ 〈u,u〉 ≥ 0.

Since the above inequality is true for any real number t, the discriminant

∆ = 4|〈u,v〉|2 − 4〈u,u〉 · 〈v,v〉 ≤ 0,

which proves the inequality. �

Proof. [Second Proof] Assume that v 6= 0. Then we have

〈u− 〈u,v〉
〈v,v〉

v,u− 〈u,v〉
〈v,v〉

v〉 ≥ 0.

Expanding the above inequality, we obtain the Cauchy-Schwarz Inequality. �

Remark The Cauchy-Schwarz inequality is also called the Cauchy-Bunyakovsky-Schwarz in-

equality.

The inequality for sums was published by Augustin-Louis Cauchy (1821), while the corre-

sponding inequality for integrals was first proved by Viktor Bunyakovsky (1859). The modern

proof of the integral version was given by Hermann Schwarz (1888).

Definition 0.5

Two vectors u,v are called orthogonal, if 〈u,v〉 = 0.

Example 0.7 InR3, the vector (1, 2, 3) is orthogonal to (4,−5, 2) with respect to the dot product,

because

(1, 2, 3) · (4,−5, 2) = 1 · 4 + 2 · (−5) + 3 · 2 = 0.

Example 0.8 Under the inner product

〈p, q〉 =

∫ 1

−1
p(x)q(x) dx.

The function x and x2 + 1 are orthogonal because p(x) is an odd function.

An orthonormal basis of an n-dimensional vector space is a set {v1, · · · ,vn} such that

〈vi,vj〉 =

 1, if i = j

0, if i 6= j
.

We shall introduce the Kronecker symbol δij as follows

δij =

 1, if i = j

0, if i 6= j
.

Under this notation, we have

〈vi,vj〉 = δij .
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0.3 Linear Transformation

0.3 Linear Transformation

Definition 0.6
Given two vector spaces, V andW , a linear transformation T from V toW is a mapping

T : V →W

such that

T (αu + βv) = αT (u) + βT (v)

for all u,v ∈ V and α, β ∈ R.

A linear transformation of a vector space to itself is called an endomorphism. One of the

most important concept of an endomorphism is its eigenvalue and eigenvector.

Definition 0.7
Let T : V → V be an endomorphism. Assume that there is a v ∈ V and v 6= 0 such that

T (v) = λv

for some complex number λ. Then λ is called an eigenvalue of T and v is an eigenvector

of λ.

�

Note In the following, we need to prove that the definition of eigenvalue is equivalent to the

definition of an eigenvalue of a matrix.

Let V be a finite dimensional space and let

B = {v1, · · · ,vn}

be a basis of V . We use the notation [x]B to represent the coordinates of x ∈ V , that is, when

we write x in terms of the linear combination of the basis,

x = c1v1 + · · ·+ cnvn,

we have

[x]B =


c1
...

cn

 .
Now let T : V → W be a linear transformation. As above, we assume that B is the basis

of V , and let C = {w1, · · · ,wm} be a basis ofW . Then the matrix representationM of T is

M = [[T (v1)]C, · · · , [T (vn)]C]

in the sense that

[T (x)]C = M · [x]B.
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0.3 Linear Transformation

Now we specialize the above result to the following case. Let

T : V → V

be a linear transformation from V to itself. Let

B = {v1, · · · ,vn}, C = {w1, · · · ,wn}

be two bases. LetM1,M2 be thematrix representatives with respect to the two bases respectively.

We thus have

[T (x)]B = M1 · [x]B;

[T (x)]C = M2 · [x]C.

Let A be the invertible matrix such that

[x]B = A · [x]C.

Such a matrix is called a transition matrix. Then

[T (x)]B = A · [T (x)]C .

As a result,

A ·M2 · [x]C = A · [T (x)]C = [T (x)]B = M1 ·A · [x]C.

Thus we have

AM2 = M1A,

or

M2 = A−1M1A.

ThusM1,M2 are similar, having the same eigenvalue set.

Now we talk about orientation and cross product.

Let B and C be two bases. We say that B and C are having the same orientation, if when

we write

vi =

n∑
j=1

aijwj

for i = 1, · · · , n, then we have det(A) = det(aij) > 0. They give the opposite orientation if

det(aij) < 0.

Example 0.9 The left hand and the right hand define two opposite orientations of R3.

Example 0.10 Let
B = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

and

C = {(1, 1, 0), (1, 0,−1), (2, 1, 3)}

are of the opposite orientation.
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0.4 Lines, planes, and spheres

Definition 0.8

Let {e1, e2, e3} be the standard basis of R3. If

u =
3∑
i=1

aiei, v =
3∑
j=1

bjej

are two vectors in R3, the cross product of u,v is given by

u× v = (a2b3 − a3b2)e1 + (a3b1 − a1b3)e2 + (a1b2 − a2b1)e3,

or we can write

u× v = det


e1 e2 e3

a1 a2 a3

b1 b2 b3

 .

The cross product satisfies the following properties:

Lemma 0.1

♥

Let u,v,w ∈ R3 and r ∈ R. Then

u× v = −v × u

(ru)× v = r(u× v)

u× v = 0 if and only if u and v are linearly dependent

(u + v)×w = u×w + v ×w

u× v is perpendicular to both u and v under the usual dot product

‖u× v‖ = ‖u‖ · ‖v‖ sin θ, where θ is the angle between u and v.

{u,v,u×v} gives a right hand orientation to R3 if {u,v} is linearly independent

As a result, we have the relationship between the inner product and outer product (cross

product)

|〈u,v〉|2 + ‖u× v‖2 = ‖u‖2 · ‖v‖2,

which implies the Cauchy-Schwarz Inequality in the three dimensional space.

Definition 0.9
The mixed (or triple) product of u,v,w is

[u,v,w] = 〈u× v,w〉.

A geometric interpretation of the norm of the cross product is that it is the area of the

parallelogram spanned by u,v. A geometric interpretation of the mixed scalar product is that it

is the volume of the parallelepiped spanned by u,v,w.
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0.4 Lines, planes, and spheres

0.4 Lines, planes, and spheres

In this section, we use vector notations to express some basic objects in analytic geometry.

Definition 0.10

The line through x0 ∈ R3 and parallel to a vector v 6= 0 has the equation

α(t) = x0 + tv.

Remark This is a vector notation of parametrization of a line.

Example 0.11 Let x1,x2 ∈ R3 be two points. Then the line through x1 and x2 in R3 has the

equation.

α(t) = x1 + t(x2 − x1).

Definition 0.11
The plane through x0 perpendicular to n 6= 0 has the equation

〈x− x0,n〉 = 0.

Lemma 0.2

♥

Let {u,v} be two linearly independent vectors. Then the place through x0 and parallel

to the subspace spanned by {u,v} has the equation

[u,v,x− x0] = 〈x− x0,u× v〉 = 0.

Definition 0.12

The sphere in R3 with centerm and radius r > 0 has equation

〈x−m,x−m〉 = ‖x−m‖2 = r2. (1)

Remark Let

x =


x1

x2

x3

 , m =


m1

m2

m3

 .
Then we get the usual equation of a sphere

(x1 −m1)
2 + (x2 −m2)

2 + (x3 −m3)
2 = r2.

Example 0.12 (Kelvin Transformation)

We consider the equation of a sphere (1). Let x0 be a point on the sphere, that is, we have

〈x0 −m,x0 −m〉 = r2.

The Kelvin Transformation is a map

K : R3 → R3, x 7→ x0 +
x− x0

‖x− xo‖2

9



0.5 Vector Calculus

By a straightforward computation, we haveK2 = id. Assume

〈K(x)−m,K(x)−m〉 = r2.

We get

1 + 2〈x− x0,x0 −m〉 = 0.

So the Kelvin transformation maps a sphere to a plane.

External Link. The detailed computation can be found here.

Example 0.13 (Ptolemy Inequality) Let u,v,w,x be four vectors in the Euclidean plane. Then

we have

‖u−w‖ · ‖v − x‖ ≤ ‖u− v‖ · ‖x−w‖+ ‖u− x‖ · ‖v −w‖.

The equality is valid if and only if these four vectors are concyclic.

External Link. The Ptolemy Inequality is closely related to the Ptolemy Theorem. For details

of the Ptolemy and his theorem, see Wikepedia of Ptolemy Theorem

0.5 Vector Calculus

In differential geometry, in addition to study functions of several variables. We also need

to study vector-valued functions.

We can define derivatives, indefinite integral and definite integrable in similar ways to those

of multi-variable functions.

Let V,W be finite dimensional vector spaces. Let

F : V →W

be a differentiable function, with definition as follows.

Definition 0.13
We fix a basis of V and using that basis, we identify V to Rn. Similarly, and we fix a basis

ofW and identify it to Rm. Then we can identify F : V →W by F : Rn → Rm. So F is

differentiable if and only if F is a differentiable as a mapping of Rn → Rm.

External Link. Here is a video clip for the details of the above definition.

Let f : R→ Rn be a single variable vector-valued function. We can define

df

dt
=


df1
dt
...
dfn
dt



10
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0.5 Vector Calculus

if

f =


f1
...

fn


Likewise, we can define ∫

f(t) dt,

∫ b

a
f(t) dt

in similar ways.

If f : R → V be an abstract vector-valued function, we can identity V with Rn under a

fixed basis, and define the derivative, integral, etc, similarly.

Lemma 0.3

♥

Let f : R → V, g : R → V and let 〈 , 〉 be an inner product on V . Then if f and g are

differentiable, so is 〈f, g〉, which is a function of one variable. Moreover, we have
d

dt
〈f, g〉 = 〈df

dt
, g〉+ 〈f, dg

dt
〉.

Similarly, we have

Lemma 0.4

♥

Using the notations as in the above lemma, we have
d

dt
(f × g) =

df

dt
× g + f × dg

dt
.

Both of the above two lemmas can be proved directly. Moreover, we can generalize the

above results into the following.

Let V,W, S be vector spaces (probably of infinite dimensional) and let

K : V ×W → S

be a map. We sayK is bilinear, ifK is linear with respect to each component.

Both the inner product and cross product are bilinear mappings.

Let f : R→ V , g : R→W be differentiable functions. Then the function

h(t) = K(f(t), g(t))

is differentiable, and
dh

dt
= K(

df

dt
, g(t)) +K(f(t),

dg

dt
).

Definition 0.14

Let f : R → R be a continuous function. We say f is of class Ck, if all derivatives up
through order k exist and are continuous.

f : Rn → R is of class Ck if all its (mixed) partial derivatives of up through order k exist

11



0.6 Einstein Convention

and are continuous. A vector-valued function is of class Ck if all of its components with

respect to a given basis are of class Ck.
If f is of class Ck for any k, we say f is of C∞, or we say f is smooth.

We assume most of the functions we shall study in this course are smooth, or at least of C3.
Finally, we review the chain rule. Let x be a function of (u1, · · · , un), and if each ui are

functions of (v1, · · · , vm), say,

ui = ui(v1, · · · , vm).

for i = 1, · · · , n. Then we have the chain rule
∂x

∂vα
=

n∑
i=1

∂x

∂ui
· ∂ui
∂vα

(2)

for α = 1, · · · ,m.

0.6 Einstein Convention

Definition 0.15. Einstein Convention
When an index variable appears twice in a single term and is not otherwise defined, it

implies summation of that term over all the values of the index. When an index variable

appears only once, it implies that the equation is valid for every value of such an index.

For example, Equation (2) can be written as
∂x

∂vα
=

∂x

∂ui
· ∂ui
∂vα

.

In the above equation, the index i in the right appears twice, so we assume the expression is

summing over all possible i. On the other hand, the index α appears only once, so we assume

the equation is valid for all range of α.

Example 0.14 Let A = (aij), B = (bij), and C = (cij) be matrices. Then the matrix

multiplication,

C = AB,

can be written using the Einstein Convention as

cij = aikbkj .

The Einstein Convention gives another way to express and generalize linear algebra.
�

Note Let’s discuss the representation of a matrix. In linear algebra, there are three ways to

represent a matrix

A = [a1, · · · ,an] =


a11 · · · a1n
...

...

am1 · · · amn

 ,
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0.6 Einstein Convention

where a1, · · · ,an are column vectors. The easiest way to represent a matrix is to a capital letter,
say A. But this would contain the least amount of information about the matrix. On the other

extreme, if we represent a matrix by providing all the details, it would be too clumsy to write

down.

Here we give the fourth method of representing a matrix, by writing it as (aij), which takes

care of both simplicity and information.

Example 0.15 Prove the associativity of matrix multiplication.
Proof. LetA = (aij),B = (bij) bematrices. LetD = (dij) be thematrixD = AB.

In terms of the Einstein Convention, D = AB is equivalent to

dij = aikbkj . (3)

Here the index k is called a dummy index in the sense that we can replace it with other

indices without changing the equations:

dij = aikbkj = aitbtj = aiαbαj . (4)

Now letC = (cij),E = BC = (eij),F = (AB)C = (fij) andG = A(BC) = (gij).

Then the entries for (AB)C = DC would be

fij = dikckj = ditctj .

From (4), we know that dit = aikbkt. Thus

fij = aikbktctj .

The reason we use t as the dummy index in (4) is because k has been used in (3) so

we need to use a different one, keeping indices repeated at most twice.

Similarly, we have

gij = aitbtkckj .

Thus fij = gij and hence

(AB)C = A(BC),

proving the associativity. �

Example 0.16 Using the Einstein Convention to prove the following version of the Cauchy

inequality. Let x = (x1, · · · , xn) and y = (y1, · · · , yn). Then

|x · y|2 ≤ ‖x‖2 · ‖y‖2.

Proof. Using the Einstein Convention, we can write

x · y =

n∑
i=1

xiyi = xiyi.

Thus

|x · y|2 =

(
n∑
i=1

xiyi

)2

=

(
n∑
i=1

xiyi

)
·

 n∑
j=1

xjyj

 = xiyixjyj .
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0.6 Einstein Convention

On the other hands, we can write

‖x‖2 · ‖y‖2 =

(
n∑
i=1

x2i

)
·

 n∑
j=1

y2j

 = x2i y
2
j .

Thus the Cauchy inequality, written under the Einstein Convention, is

x2i y
2
j − xiyixjyj =

1

2
(x2i y

2
j + x2jy

2
i )− xiyixjyj =

1

2
(xiyj − xjyi)2 ≥ 0.

This completes the proof.

�
�

Note If n = 3, then we can define

(x,y) 7→ (x2y3 − x2y2, x3y1 − x1y3, x1y2 − x2y1) = x× y

which is the cross product. If n 6= 3, then the vector (xiyj − xjyi) for i < j is of dimension

n(n− 1)/2 6= 3. This explains why we can only define the cross product in 3 dimensional vector

space. A more general algebraic product, called wedge product, will be used in any dimensional

vector spaces to catch in the excess of the Cauchy inequality.

External Link. As fun reading, you can find the Shoelace Formula in the Wikipedia, which is

related to both the cross product and wedge product.
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