
Chapter 1 Calculus on Euclidean Space

Introduction

h Calculus on Euclidean space

h Tangent Vectors and tangent space

h The space of differential forms

h The wedge product

h The differential operator d

h The differential of a mapping

1.1 Euclidean Space

Definition 1.1

♣

Euclidean 3-space R3 is the set of all ordered triples of real numbers. Such a triple

p = (p1, p2, p3) is called a point of R3.

By last chapter, R3 is a vector space.

Definition 1.2

♣

On R3, there are three natural real-valued functions x, y, z, defined by

x(p) = p1, y(p) = p2, z(p) = p3.

These functions are called natural coordinate functions of R3.

Remark We shall also use index notation for these functions, writing

x1 = x, x2 = y, x3 = z.

Definition 1.3

♣

A real-valued function f on R3 is differentiable (or infinitely differentiable, or smooth, or

of class C∞) provided all partial derivatives of f , of all orders, exist and are continuous.

As we know from the previous chapter, the space of smooth functions forms a vector space,

that is, let f, g be two smooth functions of R3 and let λ ∈ R, we have

(f + g)(p) = f(p) + g(p), (λf)(p) = λf(p).

In addition, we have

(fg)(p) = f(p)g(p).

The space of smooth functions, with respect to the three operations: addition, scalar multiplica-

tion, and the multiplication forms an algebra.



1.2 Tangent Vectors

1.2 Tangent Vectors

Definition 1.4

♣

A tangent vector, or a vector vp to R3 consists of two points of R3: its vector part v and

its point of application p.

Definition 1.5

♣

Let p be a point of R3. The set Tp(R3) consisting of all tangent vectors that have p as

point of application is called the tangent space of R3 at p.

�

Note Tangent space is a vector space.

Definition 1.6

♣

A tangent vector field, or a vector field V on R3 is a function that assigns to each point p

of R3 a tangent vector V (p) to R3 at p.

�

Note Vector field is one of the most important concepts in differential geometry. By the above

definition, a vector field is just a vector valued function. This is because R3 is a flat space, and

hence there are global basis under which all tangent spaces can be identified as R3. In general,

a vector field defines a different type of “functions” comparing to the traditional one.

Remark By definition, a vector field doesn’t have to be smooth. However, in this course, we

always assume it is smooth (or at least of C3) when regarding it as a vector-valued function.
The domain of a vector field doesn’t have to be on the whole R3: it could be an open set of

R3, or a curve or a surface in R3. In the latter to cases, we say that the vector field is along the

curve or surface.

The space of vector fields is obviously a vector space. However, it has finer structure than

that. It is a module over the algebra of smooth functions.

There are two operations on the space of vector fields: addition and scalar multiplication.

Let V,W be two vector fields such that V = viUi,W = wiUi. Let λ ∈ R. Then we can define

V +W =
∑
i

(vi + wi)Ui

λV =
∑

(λvi)Ui.

Moreover, let f be a smooth function of R3. Then we can define

(fV )(p) = f(p)V (p)

for all p. Of course, such kind of multiplication can be localized to the case when V and f are

only defined on a subset of R3.
�

Note The scalar multiplication coincides with the above multiplication by regarding a scalar as

a constant function.
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1.3 Directional Derivatives

�

Note We can also say that the space of vector fields is a module over the ring of smooth

functions. But the algebra of smooth functions carries more structure than the ring structure of

smooth functions: it has the additional scalar multiple structure. Therefore it is better to say the

module over the algebra of smooth functions than that over the ring of smooth functions.

Definition 1.7

♣

Let U1, U2 and U3 be the vector fields on R3 such that

U1(p) = (1, 0, 0)p

U2(p) = (0, 1, 0)p

U3(p) = (0, 0, 1)p

for each p of R3. We call {U1, U2, U3} the natural frame field of R3.

Remark For fixed point, {U1, U2, U3} provides the standard basis of R3, usually expressed as

{e1, e2, e3}.
The following result is a generalization of what we have learned in linear algebra.

Lemma 1.1

♥

If V is a vector field of R3, then there are three uniquely determined real-valued functions

v1, v2, v3 on R3 such that

V = v1U1 + v2U2 + v3U3.

These three functions are called Euclidean coordinate functions of V .

Proof. For fixed p ∈ R3, V (p) defines a vector in R3, therefore there is unique

numbers v1(p), v2(p), and v3(p) such that

V (p) = v1(p)U1(p) + v2(p)U2(p) + v3(p)U3(p).

Thus

V = viUi

by definition. �

1.3 Directional Derivatives

Definition 1.8

♣

Let f be a differentiable real-valued function on R3, and let vp ∈ Tp(R3) be a tangent

vector to R3. Then the number

vp[f ] =
d

dt
(f(p + tv))|t=0

is called the derivative of f with respect to vp
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1.4 Curves in R3

�

Note It is called the directional derivative because p + tv for non-negative real number t

represents a ray starting from p in the direction v. We have encountered directional derivative

in Calculus. Here the emphasis is that “vector” (which is an algebraic concept) can be identified

as a “derivative” (which is a calculus concept).

Lemma 1.2

♥

If vp = (v1, v2, v3) is a tangent vector to R3, then

vp[f ] =
∑

vi
∂f

∂xi
(p).

Proof. Let p = (p1, p2, p3); then

p + tv = (p1 + tv1, p2 + tv2, p3 + tv3).

We then

vp[f ] =
d

dt
(f(p + tv))|t=0 =

∑
i

∂f

∂xi
(p)vi.

�

Example 1.1 Let f(x, y, z) = x2yz. Let p = (1, 1, 0) and v = (1, 0,−3). Then
∂f

∂x
= 2xyz,

∂f

∂y
= x2z,

∂f

∂z
= x2y.

Thus
∂f

∂x
(p) = 0,

∂f

∂y
(p) = 0,

∂f

∂z
(p) = 1.

Thenfore

vp[f ] = 0 + 0 + 1 · (−3) = −3.

Theorem 1.1

♥

Let f and g be functions on R3, vp and wp tangent vectors, a and b numbers. Then

(avp + bwp)[f ] = avp[f ] + bwp[f ];

vp(af + bg) = avp[f ] + bvp[g];

vp[fg] = vp[f ] · g(p) + f(p) · vp[g].

Proof. Only the 3rd equation is new, which can be proved using Lemma 1.2: We

have

vp[fg] = vi
∂(fg)

∂xi
(p) = vif(p)

∂g

∂xi
(p) + vig(p)

∂f

∂xi
(p).

By definition, we have

vp[fg] = vp[f ] · g(p) + f(p) · vp[g].

�
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1.4 Curves in R3

1.4 Curves in R3

One of the fundamental questions in curve theory is: how to define a curve? In Euclidean

geometry, only two kinds of curves are studied: straight line and circle. In analytic geometry,

we study parabola, ellipse, and hyperbola. These curves have quite explicit geometric meanings.

For example, an ellipse is the the set of all points in a plane such that the sum of the distances

from two fixed points (foci) is constant. If we want to study more general curves, we should not

expect them have clear geometric meanings.

In differential geometry, we define a curve in R3 by a function

α : I → R3, α(t) = (α1(t), α2(t), α3(t)),

where I is an open interval. In order to use calculus, we usually assume that such a function is

smooth.

Definition 1.9

♣
A curve in R3 is a differentiable function α : I → R3 from an open interval into R3.

We shall give a couple of examples of curves.

Example 1.2 (Straight Line) A straight line can be expressed best using the vector notations. Let

p, q be two vectors and let q 6= 0. Then we can use

α(t) = p + tq

to represent a curve with direction q.

Example 1.3 (Helix) The parameter equations for a circle (in R3) can be expressed by

t 7→ (a cos t, a sin t, 0).

If we allow this curve to rise , then we obtain a helix α : R→ R3, given by the formula

α(t) = (a cos t, a sin t, bt),

where a > 0 and b 6= 0.
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1.4 Curves in R3

Definition 1.10

♣

Let α : I → R3 be a curve in R3 with α = (α1, α2, α3). For each number t ∈ I , the
velocity vector of α at t is the tangent vector

α′(t) =

(
dα1

dt
(t),

dα2

dt
(t),

dα3

dt
(t)

)
α(t)

at the point α(t) in R3.

;

Example 1.4 For the helix,

α(t) = (a cos t, a sin t, bt),

the velocity vector is

α′(t) = (−a sin t, a cos t, b)α(t).

Definition 1.11

♣

Let α : I → R3 be a curve. If h : J → I is a differentiable function on an open interval

J , then the composition function

β = α(h) : J → R3

is a curve called a reparametrization of α by h.

�

Note The above definition is a key concept. See the next lemma.

Lemma 1.3

♥

If β is the reparametrization of α by h, then

β′(s) =
df

ds
· α′(h(s)).

Proof. This is a straightforward application of the chain rule.

�

Lemma 1.4

♥

Let α be a curve in R3 and let f be a differentiable function on R3. Then

α′(t)[f ] =
d(f(α))

dt
(t).

We end up this section by a discussion of dual space.
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1.4 Curves in R3

Dual Space

Definition 1.12

♣

Given any vector space V , the dual space V ∗ is defined as the set of all linear transforma-

tions ϕ : V → R. The dual space is a vector space by the following definition of addition

and scalar multiplication.

(ϕ+ ψ)(x) = ϕ(x) + ψ(x)

(aϕ)(x) = a(ϕ(x))

for all ϕ,ψ ∈ V ∗ and a ∈ R, x ∈ V . Elements of V ∗ is called a covector, or linear

functional, or a one-form.

Example 1.5 On Rn, any linear function

`(x) = c1x1 + · · ·+ cnxn,

where x = (x1, · · · , xn) and c1, · · · , cn being real numbers, is a liner functional.

Example 1.6 Let C([0, 1]) be the vector space of continuous functions over [0, 1]. Then

f 7→
∫ 1

0
f(x)dx

defines a linear functional.

Example 1.7 Let p ∈ R3. Let vp be a vector on Tp(R3). Then the directional derivative

f 7→ vp[f ]

is a linear functional on the vector space of differentiable functions.

External Link. Here is a good video of the dual space. The first 8 minutes is useful, and the

last part is beyond the scope of this course.

Theorem 1.2. (The Riesz Representation Theorem)

♥

LetV be a finite dimensional vector space and let 〈 , 〉 be an inner product ofV . Letx ∈ V .

Then it defines a linear functional `x such that `x(y) = 〈x,y〉 for any y ∈ V ; conversely,

let ` be a linear functional, then there is a unique x ∈ V such that `(y) = 〈x,y〉 for any
y ∈ V .

Remark In order words, every linear functional can be represented, through a fixed inner product,
as an element of the vector space.

Remark We elaborate the Riesz Representation Theorem in the context of the vector space Rn

with the dot product. Let x ∈ Rn, and let ` be a linear functional. By the above theorem, there

is a vector c such that

`(x) = c · x = c1x1 + · · ·+ cnxn.

In this way, the dual space of Rn can be identified to Rn.
�

Note There is an infinite dimensional version of the Riesz Representation Theorem on normed
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1.5 1-forms

vector space, but the linear functional in question needs to be replaced by bounded linear

functional.

External Link. The linear algebra over infinite dimensional vector spaces is called Functional

Analysis.

1.5 1-forms

Definition 1.13

♣

A 1-form φ on R3 is a real-valued function on the set of all tangent vectors to R3 such that

φ is linear at each point, that is,

φ(av + bw) = aφ(v) + bφ(w)

for any number a, b and tangent vectors v,w at the same point of R3.a

aRecall in Definition 1.4, a vector on R3 is a pair (p,v), where p ∈ R3 and v is the vector part.

As before, the space of 1-forms is a module over the algebra of smooth functions. Let ϕ,ψ

be two 1-forms; let v be a vector on R3; let λ ∈ R. Then we can define

(ϕ+ ψ)(v) = ϕ(v) + ψ(v); (λϕ)(v) = λϕ(v).

Note ϕ(v) is a smooth function on R3. Let f be a smooth function. Let vp be the vector part of

v.

(fϕ)(vp) = f(p)ϕ(vp).

In fact, there is a natural way to extend a 1-from as a function over vector fields. A 1-form

is a linear functional in two ways: first, it is a linear functional over the vector space of vector

fields, that is, if ϕ is a 1-form, for any vector field v, (ϕ(v))(p) = ϕ(vp) is a smooth function;

second, for any fixed point p, ϕ is a linear functional over Tp(R3).

Definition 1.14

♣

If f is a differentiable function on R3. Then df is a 1-form defined by

df(vp) = vp[f ].

Example 1.8 1-forms on R3: by the above definition, we can define 1-froms dx1, dx2, dx3. Let

vp = viUi.

Then by definition,

dxi[vp] = vp[xi] = vi.

Let’s consider the 1-form

ψ = fidxi,
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1.5 1-forms

where fi are functions. Then

ψ[vp] = fidxi[vp] = fi(p)vi.

Definition 1.15. Dual Basis

♣

Let V be a vector space and let (e1, · · · , en) be a basis of V . (f1, · · · , fn) is called the

dual basis of (e1, · · · , en), if fi ∈ V ∗, and if

fi(ej) = δij .

Theorem 1.3. Dual Basis Theorem

♥
Using the above notations, then (dx1, dx2, dx3) is the dual basis of (U1, U2, U3).

Proof. We have

dxi(Uj) = Uj [xi] =
∂xi
∂xj

= δij .

�

Corollary 1.1

♥

If f is a differentiable function on R3, then

df =
∂f

∂xi
dxi = fidxi.

�

Note As we have seen, we use fi to represent ∂f
∂xi

. In differential geometry, this would greatly

simplify complicated computations. In general, whether fi is ∂f
∂xi

or an arbitrary function

depends on the context.

Proof. By definition, df [vp] = vp[f ]. But vp[f ] = vifi(p) = (fidxi)[vp].

�

From the definition of df , we observed that we can regard d as an operator, that would send

a function f to a 1-form df . Such an operator is called a differential operator, which plays one

of the center role in differential geometry.

Lemma 1.5

♥

Let fg be the product of differentiable functions f and g on R3. Then

d(fg) = gdf + fdg.

Proof. We have

d(fg) = (fg)idxi = (gfi + fgi)dxi = gfidxi + fgidxi = g df + fdg.

�
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1.6 Differential Forms

Lemma 1.6

♥

Let f be a function on R3 and let h : R→ R be a function of single variable. Then

d(h(f)) = h′(f)df.

Proof.
d(h(f)) = (h(f))idxi = h′(f)fidxi = h′(f)df.

�

Example 1.9 Let f be the function

f(x, y) = (x2 − 1)y + (y2 + 2)z.

Then

df = 2xydx+ (x2 + 2yz − 1)dy + (y2 + 2)dz.

As a result, we have

df [v] = 2xyv1 + (x2 + 2yz − 1)v2 + (y2 + 2)v3.

Thus

df [vp] = 2p1p2v1 + (p21 + 2p2p3 − 1)v2 + (p23 + 2)v3.

We also have

vp[f ] = 2p1p2v1 + (p21 + 2p2p3 − 1)v2 + (p23 + 2)v3.

This verifies df [vp] = vp[f ].

1.6 Differential Forms

The space of differential 1-forms is a vector space, or more precisely, it is a module over

the algebra of smooth functions. To get more information from tangent spaces where the space

of differential 1-forms are dual spaces of them at each point, we shall define multiplication of

differential 1-forms. Since all differential 1-forms are generated by dx1, dx2, dx3, we just need

to define their multiplications.

What is dxidxj , or we called the wedge product dxi ∧ dxj of them? We don’t know at this

moment. But we shall assume that

dxidxj = −dxjdxi

for 1 ≤ i, j,≤ 3. Obviously, this would create a new kind of algebra. For multiplication of real

numbers, we have commutativity, which means, for any two real numbers a, b, we have ab = ba.

On the other hand, for two n × n matrics A,B, in general, we have AB 6= BA. The property

for the multiplication of 1-forms are different from both of the above two. It is called skew

commutativity. The algebra defined by the skew commutativity leads to the so-called exterior
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1.6 Differential Forms

algebra.

A first observation on the definition of the wedge product reveals that, since dxi ∧ dxi =

−dxi ∧ dxi, we must have dxi ∧ dxi = 0. A quick counting shows that the only non-zero

independent products would be dx1dx2, dx1dx3 and dx2dx3.

In general, we can define the whole system of p-forms. we have already encountered 0-

forms, which are smooth functions, and 1-forms. Taking multiplication of dxi with dxj , we

can define the space of two forms to be generated by dx1dx2, dx1dx3 and dx2dx3 over smooth

functions, that is, all two forms can be expressed by

fdx1dx2 + gdx1dx3 + hdx2dx3,

where f, g, h are functions.

We can define the 3-forms in an obvious way: all three forms have the expressions

fdx1dx2dx3,

where f is a function.

In the high dimensional case, we can define the p-forms for p > 3. However, on R3,

all higher differential forms would be zero: consider, for example, a 4-form dxidxjdxkdxl.

Since the space is of 3 dimensional, at least two of the indices must be the same. By skew

commutativity, all 4-forms must be zero.

Example 1.10 Compute the Wedge products

(1). Let

φ = xdx− ydy, ψ = zdx+ xdz.

Then

φ ∧ ψ = (xdx− ydy) ∧ (zdx+ xdz)

= xzdxdx+ x2dxdz − yzdydx− xydydz

= yzdxdy + x2dxdz − xydydz.

(2). Let θ = zdy. Then

θ ∧ φ ∧ ψ = −x2z dxdydz.

(3). Let η = ydxdz + xdydz. Then

φ ∧ η = (xdx− ydy) ∧ (ydxdz + xdydz)

= (x2 + y2) dxdydz.

�

Note It should be clear from these examples that the wedge product of a p-form and a q-form is

a (p+ q)-form. Thus such a product is automatically zero whenever p+ q > 3.

Lemma 1.7

♥

Let φ, ψ be 1-forms. Then

φ ∧ ψ = −ψ ∧ φ.
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1.6 Differential Forms

Proof. Let φ = fidxi, ψ = gidxi. Then

φ ∧ ψ = fidxigjdxj = figjdxidxj = −figjdxjdxi = −ψ ∧ φ.

�

Remark The space of any p-forms forms a module over smooth functions1. However, given that

a p-form wedge a q-form to be a (p+ q)-form, we can take the direct sum of the modules of all

p-forms. Obviously, this would give us a module over functions where the wedge product is well

defined.

In what follows we will define arguably the most important concept in differential geometry.

Definition 1.16

♣

If φ = fidxi is a 1-form on R3. The exterior derivative, or differential, of φ is the 2-form

dφ = dfi ∧ dxi.

Example 1.11 If
φ = fidxi = f1dx1 + f2dx2 + f3dx3,

then we have

dφ =

(
∂f2
∂x1
− ∂f1
∂x2

)
dx1dx2 +

(
∂f3
∂x1
− ∂f1
∂x3

)
dx1dx3 +

(
∂f3
∂x2
− ∂f2
∂x3

)
dx2dx3.

Thus if we identify φ to a vector-valued function E = (f,f2, f3), then dφ can be identified as

curl(E). In this sense, dφ generalize the curl operator.

Theorem 1.4

♥

Let f, g be functions and φ, ψ be 1-forms. Then

1. d(fg) = df g + f dg;

2. d(fφ) = df ∧ φ+ f dφ;

3. d(φ ∧ ψ) = dφ ∧ ψ − φ ∧ dψa.

aThis is more a definition than a property of the differential operator.

Proof. Property (1) is just the product rule We proved in Lemma 1.5. To prove (2),

we let φ = fidxi. Then

d(fφ) = d(ffi) ∧ dxi = df ∧ fidxi + fdfi ∧ dxi = df ∧ φ+ f dφ.

Property (3) is, straightly speaking, a definition rather than a property, since we have

never defined the differential of 2-forms before. Nevertheless, let’s work on it. First,

d(φ ∧ ψ) = d(figjdxidxj).

As in the case of 1-forms, we define

d(figjdxidxj) = d(figj) ∧ dxi ∧ xj .

1For any p, even if p > 3 or p < 0, where we defined the module to be 0.
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1.7 Mappings

We then have

d(φ ∧ ψ) = dfigj ∧ dxi ∧ dxj + fidgj ∧ dxi ∧ dxj

= dfi ∧ dxi ∧ gjdxj − fi ∧ dxi ∧ dgj ∧ dxj

= dφ ∧ ψ − φ ∧ dψ.

�

Example 1.12 Let
φ = f1dx2dx3 + f2dx3dx1 + f3dx1dx2

be a 2-form. Then

dφ =

(
∂f1
∂x1

+
∂f2
∂x2

+
∂f3
∂x3

)
dx1dx2dx3.

Thus if we identify E = (f1, f2, f3). Then dφ can be identify to div(E).

Example 1.13 Let f be a function, then

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 +

∂f

∂x3
dx3

can be identified as ∇f .
Example 1.14 If we identify φ = fidxi to u and ψ = gidxi to v, then φ∧ψ can be identified to

u× v.

� Exercise 1.1 Can you use exterior algebra to define the dot product?

1.7 Mappings

In this section we discuss functions from Rn to Rm. If n = 3 and m = 1, this is just a

function onR3. In the other extreme, if n = 1 andm = 3, then this is a single variableR3-valued

function, and by the previous sections, they can be used to represent curves in R3. All of these

functions have been studied in Calculus, but in this section, we shall study them using the idea

of linearization.

Recall that a linear transformation from Rn to Rm is a linear function from Rn to Rm.

Definition 1.17

♣

Given a function F : Rn → Rm, let f1, · · · , fm denote the real-valued function on Rn

such that

F (p) = (f1(p), f2(p), · · · , fm(p))

for all points p ∈ Rn. These functions are called the Euclidean coordinate functions of

F , and we can write F = (f1, · · · , fm).

The functions F is differentiable provided its coordinate functions are differentiable in the

usual sense. A differentiable function F : Rn → Rm is called a mapping from Rn to Rm.
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1.7 Mappings

Definition 1.18

♣

If α : I → Rn is a curve in Rn and F : Rn → Rm is a mapping, then the composition

function β = F (α) : I → Rm is a curve in Rm called the image of α under F .

�

Note Let B be the set of all curves in Rn and let C be the set of all curves in Rm. Then a

mapping F : Rn → Rm induces a map B → C .

Definition 1.19

♣

Let F : Rn → Rm be a mapping. If va is tangent vector to Rn at p. Let F∗(v) be the

initial velocity of the curve t 7→ F (p + tv). The resulting function F∗ sends a tangent

vectors to Rn to tangent vectors to Rm, and is called the tangent map of F .

aIf v = 0, the straight line p+ tv is degenerated to a point p. But the definition is still valid.

Proposition 1.1

♠

Let F = (f1, · · · , fm) be a mapping from Rn to Rm. If v is a tangent vector to Rn at p,

then

F∗(v) = (v[f1], · · · ,v[fm])

at F (p).

Proof. We take m = 3 for simplicity. By definition, the curve t 7→ F (p + tv) can

be written as

β(t) = F (p + tv) = (f1(p + tv), f2(p + tv), f3(p + tv)).

By definition, we have F∗(v) = β′(0). To get β′(0), we take the derivatives, at t = 0,

of the coordinate functions of β. But
d

dt
(fi(p + tv))|t=0 = v[fi].

Thus

F∗(v) = (v[f1],v[f2],v[f3])|β(0),

where β(0) = F (p).

�

Let p ∈ Rn. Then we have the linear transformation

F∗p : Tp(Rn)→ TF (p)(Rm)

called the tangent map of F at p.

Corollary 1.2

♥

If F : Rn → Rm is a mapping, then at each point p of Rn, the tangent map F∗p :

Tp(Rn)→ TF (p)(Rm) is a linear transformation.
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1.7 Mappings

�

Note For any nonlinear function F , we can define a semi-linear function F∗p, where for fixed p,

the function is a linear transformation. But the function F∗ : Rn×Rn → Rm, (p,v) 7→ F∗p(v)

is nonlinear with respect to p.
�

Note Let f(t) be a function of single variable. Then f∗ : R × R → R, (t, s) 7→ sf ′(t) is the

tangent map of f . Such a tangent map can be identified to the derivative f ′(t).

Corollary 1.3

♥

Let F : Rn → Rm be a mapping. If β = F (α) is the image of a curve α in Rn, then

β′ = F∗(α
′).

Corollary 1.4

♥

If F = (f1, · · · , fm) is a mapping from Rn to Rm, then

F∗(Uj(p)) =

m∑
i=1

∂fi
∂xj

(p)Ūi(F (p)),

where {Ūi}, for i = 1, · · · ,m are natural frame fields of Rm.

Definition 1.20

♣

The matrix

J =

(
∂fi
∂xj

(p)

)
1≤i≤m,1≤j≤n

is called the Jacobian matrix of F at p.

In terms of matrix notations, we have

F∗[U1(p), · · · , Un(p)] = [Ū1(F (p)), · · · , Ūm(F (p))] · J.

Definition 1.21

♣

A mapping F : Rn → Rm is regular provided that at every point p of Rn the tangent map

F∗p is one-to-one.

Remark By linear algebra, the following are equivalent

(1) F∗p is one-to-one.

(2) F∗p(vp) = 0 implies vp = 0.

(3) The Jacobian matrix of F at p has rank n, the dimension of the domain Rn of F .

Remark Ifm = n, then we know that, by the Invertible Matrix Theorem, that F∗p is one-to-one

if and only if it is onto.
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Definition 1.22

♣

Let U ,V be two open sets of Rn. We say that U and V are diffeomorphic, if there is

a differentiable map F : U → V which is one-to-one and onto. Moreover, the inverse

mapping: F−1 : U → V is also differentiable. We also say that F is a diffeomorphism

of U to V .

Theorem 1.5. (Inverse Function Theorem)

♥

Let F : Rn → Rm be a mapping between Euclidean spaces of the same dimension. If

F∗p is one-to-one at a point p, there is an open set U containing p such that F restricted

to U is a diffeomorphism of U onto an open set V .
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