

The Geometry of Triangles

UCI Math

Author: Zhiqin Lu
Institute: University of California, Irvine
Date: February 14, 2021
Version: 0.01
Bio: Zhiqin Lu is a professor at UCI

Contents

1 Pascal and Brianchon Theorems

Chapter 1 Pascal and Brianchon Theorems

Problem 1. Pascal Theorem

The hexagon $A B C D E F$ is inscribed to the circle. Assume that $A B, C D$ intersects at $X ; B C, E F$ intersects at Y; and $C D, F A$ intersects at Z. Then X, Y, Z are collinear.

Remark The above is called Pascal Theorem, which was discovered by the French mathematician Blaise Pascal. when he was 16 years old. The theorem can be generalized to the case to the case of conic section (see Wikipedia here). When the conic section is degenerated to two lines, it is also called the Pappus Hexagon Theorem below - some people believed that Euclid knew this theorem before Pappus.

Theorem. (Pappus Theorem)

In the following picture, the Hexagon $B C^{\prime} A B^{\prime} C A^{\prime}$ is inscribed on the two black lines. Assume that $B C^{\prime}, B^{\prime} C$ intersect at $X ; C A^{\prime}, A^{\prime} C$ intersect at Y, and $A B^{\prime}, B^{\prime} A$ intersect at Z. Then X, Y, Z are collinear.

Proof. We use analytic geometry to prove the Pascal Theorem.
We assume the circle is the unit circle. Let the equations for

$$
A B, B C, C D, D E, E F, F A
$$

be $\ell_{1}, \ell_{2}, \cdots, \ell_{6}$. These functions ℓ_{j} are linear functions. As a result, we consider two cubic polynomials $\ell_{1} \ell_{3} \ell_{5}$ and $\ell_{2} \ell_{4} \ell_{6}$. Obviously, these two polynomials pass the nine points $A, B, C, D, E, F, X, Y, Z$.

We choose a general point P in the circle. Choose a number λ such that

$$
\left(\ell_{1} \ell_{3} \ell_{5}+\lambda \ell_{2} \ell_{4} \ell_{6}\right)(P)=0
$$

Here is a fundamental question: in general, if a cubic curve doesn't vanishing identically on the unit circle, then what is the maximum number of intersections? The answer is 6 , and we shall prove it.

We can use complex numbers to write any cubic polynomials as

$$
f(z)=A z^{3}+B z^{2} \bar{z}+C z \bar{z}^{2}+D \bar{z}^{3}+E z^{2}+F z \bar{z}+G \bar{z}^{2}+H z+I \bar{z}+J=0
$$

Let $z=e^{i \theta}$ be a point on the unit disk, then $\bar{z}=1 / z$. If we multiply the above equation by z^{3} on both sides, we get a degree 6 polynomial of single variables. In general, such a 6 -degree polynomial has at most 6 roots. Since $f(z)$ vanishes on severn points A, B, C, D, E, F, P on the unit circle, it must be vanishing identically on the circle. As a result, we can factorize it as

$$
f(z)=\left(|z|^{2}-1\right) \ell(z)
$$

where, by the degree consideration, $\ell(z)$ must be linear. Since ℓ passes X, Y, Z, we conclude that X, Y, Z are collinear.

Theorem. (Brianchon Theorem)

The Hexagon $A B C D E F$ is circumscribed on a circle. Then $A D, B E$, and $C F$ are concurrent.

Remark Pascal Theorem and Brainchon Theorem are two famous "dual" theorems. We can prove it using Pascal Theorem.

Definition. (Pole and Polar)

Let O be the unit circle. The the pair $(A, P Q)$ is called the pair of pole and polar, where A is the pole, and $P Q$ is the polar.
Let $\left(x_{0}, y_{0}\right)$ be the coordinates of A. Then the equation of $P Q$ is

$$
x_{0} x+y_{0} y-1=0
$$

Proof. Let the coordinates of A_{i} be $\left(x_{i}, y_{i}\right)$ for $1 \leq i \leq 6$. Then the equations for $B_{6} B_{1}$ is

$$
\ell_{1}(x, y)=x_{1} x+y_{1} y-1
$$

Similarly, the equations for $B_{i} B_{i+1}$ for $1 \leq i \leq 5$ are

$$
\ell_{i}(x, y)=x_{i} x+y_{i} y-1
$$

Using the Pascal Theorem, there is a number λ such that

$$
\ell_{1} \ell_{3} \ell_{5}+\lambda \ell_{2} \ell_{4} \ell_{6}=C\left(x^{2}+y^{2}-1\right)(p x+q y-1)
$$

where C is a constant. We claim (p, q) is on the lines $A_{1} A_{4}, A_{2} A_{5}$, and $A_{3} A_{6}$.
In order to prove this, let $P=\left(p_{1}, q_{1}\right)$ be the intersection of $B_{1} B_{6}$ and $B_{3} B_{4}$.
Then we have

$$
x_{1} p_{1}+y_{1} q_{1}-1=0, \quad x_{4} p_{1}+y_{4} q_{1}-1=0
$$

Moreover, we have

$$
p p_{1}+q q_{1}-1=0
$$

Thus the three points A_{1}, A_{4} and (p, q) are on the line

$$
p_{1} x+q_{1} y-1=0
$$

This completes the proof.

Bibliography

[1] Coxeter, H. S. M. and Greitzer, S. L. (1967). Geometry revisited, volume 19 of New Mathematical Library. Random House, Inc., New York.
[2] Gallatly, W. (2019). The modern Geometry of the Triangle. Alpha Editions.

