1. (2 pts) Recall the minority connective M where $\bar{v}(M(\varphi_1, \varphi_2, \varphi_3))$ agrees with the minority of $\bar{v}(\varphi_1), \bar{v}(\varphi_2), \bar{v}(\varphi_3)$. More precisely,

$$\bar{v}(M(\varphi_1, \varphi_2, \varphi_3)) = \begin{cases}
1 & \text{iff } 2 \text{ or more of } \bar{v}(\varphi_1), \bar{v}(\varphi_2), \bar{v}(\varphi_3) \text{ are } 0 \\
0 & \text{iff } 2 \text{ or more of } \bar{v}(\varphi_1), \bar{v}(\varphi_2), \bar{v}(\varphi_3) \text{ are } 1
\end{cases}$$

Create a switching circuit using NOR gates which takes as inputs A, B, C and outputs $M(A, B, C)$.

Hint: Write $M(A, B, C)$ is disjunctive normal form and use the following facts:

- $P \downarrow P$ is $\neg P$
- $P \lor Q$ is $(P \downarrow Q) \downarrow (P \downarrow Q)$

where \downarrow is the connective representing NOR.

2. (1 pt each) For a formula φ and a sentence symbol A let φ^\top_A and φ^\bot_A be the formulas obtained from φ by replacing A with \top and \bot respectively. Then, let φ^*_A be the formula $\varphi^\top_A \lor \varphi^\bot_A$. Prove the following:

(a) $\varphi \models \varphi^*_A$

(b) If $\varphi \models \psi$ and A does not appear in ψ, then $\varphi^*_A \models \psi$.

(c) The formula φ is satisfiable iff φ^*_A is satisfiable.

3. (2 pts) Assume that every finite subset of Σ is satisfiable. Let φ be a formula. Show that one of the sets $\Sigma \cup \{\varphi\}$ or $\Sigma \cup \{\neg \varphi\}$ is also finitely satisfiable.