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Abstract. A gem of classical probability, the Berry-Esseen theorem provides a non-asymp-
totic form of the central limit theorem. This note gives a friendly and intuitive exposition of
the classical Fourier-analytic proof of Esseen’s smoothing inequality and, as a consequence,
a general Berry-Esseen theorem for non-i.i.d random variables. The exposition is suitable
for use in a basic graduate course in probability.

The Berry–Esseen theorem is a beautiful result in classical probability that gives a non-
asymptotic form of the central limit theorem.

Theorem 0.1 (Berry–Esseen theorem [1, 2]). Let X1, . . . , Xn be independent mean-zero ran-
dom variables whose sum Sn := X1 + · · · + Xn satisfies Var(Sn) = 1. Let G be a standard
normal random variable. Then

sup
a∈R

∣∣∣P{Sn ≤ a} − P{G ≤ a}
∣∣∣ ≤ C

n∑
k=1

E|Xk|3,

provided the right-hand side is finite, where C is an absolute constant.

To see how this implies the classical central limit theorem, let Y1, Y2, . . . be independent
mean-zero random variables with unit variances, and with uniformly bounded third moments:
supk E|Yk|3 = O(1). Applying Theorem 0.1 for Xk = Yk/

√
n, we obtain

sup
a∈R

∣∣∣∣P{Y1 + · · ·+ Yn√
n

≤ a
}
− P{G ≤ a}

∣∣∣∣ = O
( 1√

n

)
. (0.1)

Thus (Y1 + · · · + Yn)/
√
n converges in distribution to G, recovering the classical central

limit theorem (under a third moment assumption, which can be weakened). Importantly,
(0.1) establishes uniform convergence of the distribution functions, provides an explicit and

optimal rate of convergence O(n−1/2), and holds non-asymptotically, that is, for any finite n.

In this note, we present a gentle and intuitive exposition of the classical Fourier-analytic
proof of the Berry-Esseen theorem. No prior background in Fourier analysis is assumed; we
recall all we need in Section 2.

There are several existing textbook-level expositions of proofs of the Berry-Esseen theorem,
including the classical Fourier-analytic approach (see, for example, [4]) as well as proofs based
on Stein’s method (see, for example, [5]).

1. The proof strategy

Here is a bird’s-eye, non-rigorous sketch of the proof of Theorem 0.1.
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1.1. Smoothing. We begin by writing

P{Sn ≤ a} = E1{Sn≤a}. (1.1)

The difficulty is that the function x 7→ 1{x≤a} is too rough: it has a discontinuous drop from
1 to 0 at the point a. To mitigate this issue, we smooth the indicator function: approximate
it with a function f(x) that decreases from 1 to 0 gradually. With such approximation, (1.1)
becomes

P{Sn ≤ a} ≈ E f(Sn).

A rigorous version of this smoothing step will be given in Lemma 3.1.

1.2. Fourier transform. Next, we replace f(x) by an even simpler function – a complex
exponential e2πitx. This can be done using the Fourier transform inversion formula (recalled
in (2.2) below):

E f(Sn) = E
∫
R
e2πitSn f̂(t) dt =

∫
R
E
[
e2πitSn

]
f̂(t) dt.

Applying the same method to a standard normal random variable G, subtracting the two
expressions, and using Jensen’s inequality, we obtain

|P{Sn ≤ a} − P{G ≤ a}| ≲
∫
R

∣∣E e2πitSn − E e2πitG
∣∣ |f̂(t)| dt. (1.2)

This reduces the problem to comparing the characteristic functions E eitSn and E eitG. For
the standard normal random variable G, a simple computation yields

E eitG = exp(−t2/2), t ∈ R. (1.3)

1.3. Taylor approximation. For Sn, independence of the random variables Xk gives

E eitSn = E
[
eitX1

]
· · ·E

[
eitXn

]
,

which reduces the problem to computing the characteristic function E eitXk for each random
variable Xk separately. By assumption,

EXk = 0 and EX2
k =: σ2k <∞.

Using the Taylor approximation ez ≈ 1 + z + z2/2 and taking expectations, we get

E eitXk ≈ E
(
1 + itXk − t2X2

k/2
)

= 1− σ2kt
2/2 ≈ exp

(
−σ2kt2/2

)
.

Multiplying over k gives

E eitSn ≈ exp
(
−σ21t2/2

)
· · · exp

(
−σ2nt2/2

)
= exp

(
−t2/2

)
, (1.4)

since σ21 + · · ·+ σ2n = 1 by assumption. Comparing to (1.3), we see that

E eitSn ≈ E eitG.

Substituting this approximation into (1.2) completes the heuristic “proof”.
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1.4. A challenge and a fix. The main issue with this heuristic argument lies in the quality
of the Taylor approximation. We cannot expect

E eitXk ≈ exp(−σ2kt2/2) (1.5)

uniformly over all t ∈ R. For example, Xk is a Rademacher distribution, the characteristic
function equals cos(t), which does not even decay to zero as |t| → ∞.

There is an elegant fix for this issue: choose the smoothing function f whose Fourier

transform f̂ is supported on a compact interval centered at the origin. The integrand in (1.2)
would vanish outside that interval, and so it suffices to establish the approximation (1.5) only
for t close to the origin. This idea leads to Esseen’s smoothing inequality (Theorem 3.3).

In Lemma 4.1, we will prove (1.5) in a neighborhood of the origin. Multiplying over k, we
will deduce a rigorous form of (1.4) in Lemma 4.3. Plugging it into the smoothing inequality
will complete the proof of Theorem 0.1.

Now let’s do this step by step.

2. Background on Fourier transform

First, let’s recall some basic facts about Fourier transform that we will use in the proof.
The Fourier transform of an integrable function f : R → C is the bounded and continuous

function f̂ : R → C defined as

f̂(t) =

∫
R
e−2πitxf(x) dx. (2.1)

If f is a Schwartz function (that is, f and all its derivatives decay faster than any polynomial

at infinity), then f̂ is also a Schwartz function.
Any Schwartz function f can be reconstructed from its Fourier transform using the Fourier

inversion formula:

f(x) =

∫
R
e2πitxf̂(x) dx. (2.2)

Comparing with (2.1), we see that applying the Fourier transform twice yields f(−x). In
particular, the Fourier transform is an involution on even functions.

The Fourier transform preserves the L2 norm: for a Schwartz function f , the Plancherel
identity says that ∫

R
|f(x)|2 dx =

∫
R
|f̂(t)|2 dt. (2.3)

The convolution of two integrable functions f and g is the integrable function f ∗ g defined
as

(f ∗ g)(x) =
∫
R
f(y)g(x− y) dy.

The convolution theorem states that

f̂ ∗ g = f̂ · ĝ pointwise. (2.4)

3. Smoothing

We can write the cumulative distribution function of a random variable X as

P{X ≤ a} = E1(−∞,0](X − a),

where 1(−∞,0](x) is the indicator of (−∞, 0]. We now smooth this indicator, replacing it by
a function that transitions gradually from 1 to 0, with most of the transition occurring in an
ε-neighborhood of the origin.
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Lemma 3.1 (Smoothing the discrepancy). Let φ be a probability density function, which is
also a Schwartz function. Consider a smoothed version of the indicator function of (−∞, 0]:

f = 1(−∞,0] ∗ φ.

Let X and Y be random variables. Assume that the probability density function of Y is
bounded by M . Then we have for any ε > 0:

sup
a∈R

∣∣∣P{X ≤ a} − P{Y ≤ a}
∣∣∣ ≤ 2 sup

a∈R

∣∣∣∣E f(X − a

ε

)
− E f

(Y − a

ε

)∣∣∣∣+ CφMε. (3.1)

Here Cφ depends only on the choice of the smoothing function φ.

Proof. Step 1. Regularity of the discrepancy function. By rescaling, it is enough to consider
ε = 1. Our task is to bound the discrepancy function

∆(a) := FX(a)− FY (a),

where FX(a) := P{X ≤ a} and FY (a) := P{Y ≤ a} are the cumulative distribution functions.
The function FX increases, while FY cannot increase too fast because its derivative is

bounded by M . Putting this together, we see that ∆ cannot decrease too fast:

∆(ā+ t) ≥ ∆(ā)−Mt for any ā ∈ R, t ≥ 0. (3.2)

In particular, once ∆ achieves its maximum, ∆ will have to remain close to its maximum for
a while. To make this precise, assume without loss of generality that

∆̄ := sup
a∈R

|∆(a)| = sup
a∈R

∆(a). (3.3)

(Otherwise replace X,Y by −X,−Y .) Choose a point ā where ∆(ā) ≥ 0.9∆̄. Then (3.2)
gives

∆(ā+ t) ≥ 0.9∆̄−Mt ≥ ∆̄/2

as long as 0 ≤ t ≤ ∆̄/3M . In other words, we found an interval of length ∆̄/3M on which ∆
is bounded below by ∆̄/2.

Step 2. The smoothed discrepancy function. Our task is to compare the discrepancy
function ∆(a) to its smoothed version

∆f (a) := E f(X − a)− E f(Y − a).

To express ∆f in terms of ∆, note that

E f(X − a) = E
∫
R
1(−∞,0](X − a− y)φ(y) dy =

∫
R
FX(a+ y)φ(y) dy

by the Fubini theorem. Express E f(Y − a) similarly, subtract, and obtain

∆f (a) =

∫ ∞

−∞
∆(a+ y)φ(y) dy. (3.4)

Step 3. Integrating. In Step 1, we found an interval [a0 − T, a0 + T ] with T = ∆̄/6M and
on which ∆ is bounded below by ∆̄/2. Let’s decompose (3.4):

∆f (b) =

∫
|y|≤T

∆(a0 + y)φ(y) dy︸ ︷︷ ︸
I1

+

∫
|y|>T

∆(a0 + y)φ(y) dy︸ ︷︷ ︸
I2

.
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To bound I2, recall that (3.3) implies that ∆ is bounded below by −∆̄ everywhere. Moreover,
φ is a Schwartz function, so

∫
|y|>T φ(y) dy ≤ Cφ/T . Thus

I2 ≥ −∆̄ · Cφ

T
.

To bound I1, recall that ∆ is bounded below by ∆̄/2 in the range of integration. Moreover,
φ is a probability density function, so its total integral equals 1. Thus

I1 ≥
∆̄

2
·
(
1− Cφ

T

)
.

Adding the two bounds, we conclude that

∆f (a0) ≥
∆̄

2
− 3Cφ∆̄

2T
≥ ∆̄

2
− 9CφM.

Rearranging the terms yields ∆̄ ≤ 2∆f (a0) + 18CφM , which completes the proof. □

In Lemma 3.1, we replaced the indicator function 1(−∞,0] by a smooth function f . Now,
we further replace f with a very particular choice: the complex exponential.

Lemma 3.2 (Smoothed discrepancy via characteristic functions). There exists a probability
density function φ, which is also a Schwartz function, with the following property. Consider
a smoothed version of the indicator function of (−∞, 0]:

f = 1(−∞,0] ∗ φ.

Let X and Y be random variables. Then we have for any ε > 0:

sup
a∈R

∣∣∣∣E f(X − a

ε

)
− E f

(Y − a

ε

)∣∣∣∣ ≤ ∫ 1/ε

−1/ε

∣∣∣∣E eitX − E eitY

t

∣∣∣∣ dt.
Proof. Step 1. Choosing a smoothing function. By translation and dilation, we can assume
that a = 0 and ε = 1, so it suffices to prove the following version of the conclusion:

|E f(X)− E f(Y )| ≤
∫ 1

−1

∣∣∣∣E eitX − E eitY

t

∣∣∣∣ dt.
Choose any probability density function φ, which is also a Schwartz function, and whose
Fourier transform is supported in the interval [−1/2π, 1/2π].

(Why does such φ exist? Take any even Schwartz function ψ supported in [−1/4π, 1/4π]
and satisfying

∫
R ψ(x)

2 dx = 1, and set

φ(t) := ψ̂(t)2.

Since ψ is even and Schwartz, ψ̂ is real-valued and Schwartz, so φ is nonnegative and Schwartz.

Moreover, Plancherel identity (2.3) gives
∫
R ψ̂(t)

2 dt =
∫
R ψ(x)

2 dx = 1, showing that φ is
a probability density function. Finally, we have φ̂ = ψ ∗ ψ: to see this, first apply the
convolution theorem (2.4) and then the Fourier inversion formula (2.2), noting that ψ is
even. Thus, φ̂ is supported on [−1/2π, 1/2π].)

Step 2. Bounding the Fourier transform. Since the function f approaches 1 at −∞, it is
not integrable. To fix this, let us consider the integrable function

fM = 1(−M,0] ∗ φ.
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Since the indicators 1(−M,0] increase to 1(−∞,0] pointwise as M → ∞, the monotone conver-
gence theorem implies that the functions fM increase to f pointwise. Another application of
the monotone convergence theorem yields

E fM (X) → E f(X), E fM (Y ) → E f(Y ) as M → ∞. (3.5)

We claim that

f̂M is supported on
[
− 1

2π
,
1

2π

]
and

∣∣f̂M (t)
∣∣ ≤ 1

π|t|
, t ∈ R. (3.6)

Indeed, the convolution theorem (2.4) shows that f̂M = 1̂(−M,0] · φ̂. Now,

1̂(−M,0](t) =

∫ 0

−M
e−2πitx dx =

e2πitM − 1

2πit
, so

∣∣∣1̂(−M,0](t)
∣∣∣ ≤ 1

π|t|
.

Moreover, by construction, |φ̂(t)| vanishes outside [−1/2π, 1/2π] and is bounded by
∫
R|φ(x)| dx =

1 since φ is a probability density function. Combining these bounds proves the claim.

Step 3. Integrating. Using the inverse Fourier transform formula, we can write

E fM (X) = E
∫
R
e2πitX f̂M (t) dt =

∫
R
E
[
e2πitX

]
f̂M (t) dt

by Fubini theorem (note that fM is Schwartz by construction, so f̂M is Schwartz, too). Write
the same for E fM (Y ), subtract and use Jensen’s inequality to get

|E fM (X)− E fM (Y )| ≤
∫
R

∣∣E e2πitX − E e2πitY
∣∣∣∣f̂M (t)

∣∣ dt
≤

∫ 1/2π

−1/2π

∣∣E e2πitX − E e2πitY
∣∣ · 1

π|t|
dt (using (3.6)).

Make the change of variable s = 2πt, take limit as M → ∞ using (3.5), and the proof is
complete. □

Combining Lemmas 3.1 and 3.2, we immediately obtain

Theorem 3.3 (Esseen’s smoothing inequality [3]). Let X and Y be random variables. As-
sume that the probability density function of Y is bounded by M . Then we have for any
ε > 0:

sup
a∈R

∣∣∣P{X ≤ a} − P{Y ≤ a}
∣∣∣ ≤ 2

∫ 1/ε

−1/ε

∣∣∣∣E eitX − E eitY

t

∣∣∣∣ dt+ CMε.

Here C is an absolute constant.

4. Characteristic functions

Esseen’s smoothing inequality (Theorem 3.3) reduces the problem of approximating a
cumulative distribution function P{X ≤ a} to approximating the characteristic function
E eitX . So, what can we say about the characteristic function?

Lemma 4.1 (The characteristic function of a random variable). Let X be a random variable
with

EX = 0, EX2 = σ2, E|X|3 = ρ3 <∞. (4.1)

Then

E eitX = exp
(
− σ2t2

2
+O(ρ3t3)

)
whenever |t| ≤ 1

ρ
(4.2)
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and ∣∣E eitX ∣∣ ≤ exp
(
− σ2t2

2
+O(ρ3t3)

)
for any t ∈ R. (4.3)

In the statement and proof of this lemma, we use the O(·) notation to hide factors that
are bounded by absolute constants. Precisely, O(a) stands for θa where θ is some quantity
that satisfies |θ| ≤ C, where C is an absolute constant. The quantity θ and the constant C
may change from line to line.

Proof. Step 1. Approximating the exponential function. To prove (4.2), write a Taylor ap-
proximation of the exponential function:

eix = 1 + ix− x2

2
+ θ0x

3 for some θ0 = θ0(x) satisfying |θ0| ≤
1

6
.

(This holds since the third derivative of eix is bounded by 1 in modulus.) Substitute x = tX
and take expectation to get

E eitX = 1 + itEX − t2 EX2

2
+ t3 E[θ0X3]

for some random variable θ0 satisfying |θ0| ≤ 1
6 pointwise. Using the assumptions (4.1), we

get

E eitX = 1− σ2t2

2
+ θρ3t3 for some θ = θ(x) satisfying |θ| ≤ 1

6
. (4.4)

For convenience, let us rewrite this as

E eitX = 1− a

2
+ θb, where a = σ2t2 and b = ρ3t3, (4.5)

and note that

a2 ≤ |b| ≤ 1. (4.6)

(The second inequality follows from the assumption |t| ≤ 1
ρ . To check the first inequality,

note that σ ≤ ρ by Jensen’s inequality, so a2 = σ4t4 ≤ ρ4t4 = |b|4/3 ≤ |b|.)
Step 2. Linearizing the logarithmic function. Now write a Taylor approximation of the

logarithmic function:

ln(1 + x) = x+O(x2) whenever |x| ≤ 2

3
.

We can use this for x := −a
2 + θb, since (4.6) and (4.4) guarantee that |x| ≤ 1

2 + 1
6 = 2

3 . We
get

ln
(
1− a

2
+ θb

)
= −a

2
+ θb+O

((
− a

2
+ θb

)2)
.

Expanding the square and letting the O(·) notation absorb the factors bounded by absolute
constants, we conclude that

ln
(
1− a

2
+ θb

)
= −a

2
+O(b) +O(a2) +O(ab) +O(b2) = −a

2
+O(b),

where the last step follows from (4.6). Recalling (4.5), we see that we proved that

ln
(
E eitX

)
= −σ

2t2

2
+O(ρ3t3),

as claimed.
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Step 3. Deducing the bound (4.3). In the range |t| ≤ 1
ρ , the bound (4.3) follows from (4.2).

And if |t| > 1
ρ , the bound is nearly trivial. Indeed, since |eix| = 1 holds pointwise, we have

|E eitX | ≤ 1.

On the other hand, σ ≤ ρ and ρ|t| > 1 yield σ2t2/2 ≤ ρ2t2/2 ≤ ρ3|t|3, so

exp
(
− σ2t2

2
+ ρ3|t|3

)
≥ exp(0) = 1,

and (4.3) follows. □

Remark 4.2 (No approximation everywhere). One might ask whether the bound (4.2) could
hold for all t ∈ R, in which case we won’t need the separate bound (4.3). This is false in
general. For instance, a characteristic function E eitX may have compact support; then the
left-hand side of (4.2) vanishes for large |t|, while the right-hand side remains positive.

Our next goal is to approximate the characteristic function of a sum of independent random
variables. To do this, we will multiply the bounds from Lemma 4.1 to obtain:

Lemma 4.3 (The characteristic function of a sum). There exist absolute constants C, c > 0
so that the following holds. Let X1, . . . , Xn be independent random variables that satisfy

EXk = 0, EX2
k = σ2k, E|Xk|3 = ρ3k <∞.

Assume that
n∑

k=1

σ2k = 1 and let ρ3 :=
n∑

k=1

ρ3k.

Then the sum Sn := X1 + · · ·+Xn satisfies∣∣∣E eitSn − e−t2/2
∣∣∣ ≤ Cρ3|t|3e−t2/4 whenever |t| ≤ c

ρ3
.

Proof. Step 1. Assume that |t| ≤ 1
ρ . Then |t| ≤ 1

ρk
for each k, which allows us to apply (4.2)

and get

E eitXk = exp
(
−
σ2kt

2

2
+ θkρ

3
kt

3
)

for some θk = θk(t) satisfying |θk| ≤ C.

By independence, this yields

E eitSn =
n∏

k=1

E eitXk = exp
(
− t2

2
+ θρ3t3

)
for some θ = θ(t) satisfying |θ| ≤ C.

Therefore ∣∣∣E eitSn − e−t2/2
∣∣∣ = e−t2/2

∣∣∣eθρ3t3 − 1
∣∣∣ ≤ C1ρ

3|t|3e−t2/2,

and we are done. (The last bound follows once we apply the Taylor approximation of the

exponential function |ex − 1| ≤ |x|e|x| for x := θρ3t3 and note that |x| ≤ C by assumption on
t.)

Step 2. Assume that 1
ρ < |t| ≤ c

ρ3
. Arguing similarly to Step 1, but applying (4.3) instead,

we obtain ∣∣E eitSn
∣∣ ≤ exp

(
− t2

2
+ θρ3t3

)
for some θ = θ(t) satisfying |θ| ≤ C.
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Choosing the absolute constant c > 0 in the assumption on t small enough, we can make sure
that θρ3t3 ≤ t2/4. This gives ∣∣E eitSn

∣∣ ≤ e−t2/4.

Hence, by triangle inequality, we conclude that∣∣∣E eitSn − e−t2/2
∣∣∣ ≤ e−t2/4 + e−t2/2 ≤ 2ρ3|t|3e−t2/4,

since ρ3|t|3 ≥ 1 by assumption. The lemma is proved. □

5. Proof of Theorem 0.1

Now we are ready to prove the Berry-Esseen Theorem 0.1. Set

ρ3 :=

n∑
k=1

E|Xk|3.

Apply the Esseen’s smoothing inequality (Theorem 3.3) for the standard normal random
variable Y = G and for 1/ε = c/ρ3. Since the density of G is bounded by an absolute

constant and its characteristic function equals e−t2/2, we obtain

sup
a∈R

∣∣∣P{X ≤ a} − P{G ≤ a}
∣∣∣ ≤ 2

∫ c/ρ3

−c/ρ3

∣∣∣∣∣E eitX − e−t2/2

t

∣∣∣∣∣ dt+ C1ρ
3.

Now substitute the bound on the characteristic function of Sn given by Lemma 4.3. We get

sup
a∈R

∣∣∣P{X ≤ a} − P{Y ≤ a}
∣∣∣ ≤ C2ρ

3

∫ ∞

−∞
t2e−t2/4 dt+ C1ρ

3 ≤ C3ρ
3.

The Berry-Esseen Theorem 0.1 is proved. □
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