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Geometric Approach to Error-Correcting Codes

and Reconstruction of Signals

Mark Rudelson and Roman Vershynin

1 Error-correcting codes and transform coding

The results of this paper can be stated in three equivalent ways—in terms of the sparse

recovery problem, the error-correction problem, and the problem of existence of certain

extremal (neighborly) polytopes.

Error-correcting codes are used in modern technology to protect information

from errors. Information is formed by finite words over some alphabet F. The encoder

transforms an n-letter word x into an m-letter word y with m > n. The decoder must be

able to recover x correctly when up to r letters of y are corrupted in any way. Such an

encoder-decoder pair is called an (n,m, r)-error-correcting code.

Development of algorithmically efficient error correcting codes has attracted at-

tention of engineers, computer scientists, and applied mathematicians for the past five

decades. Known constructions involve deep algebraic and combinatorial methods, see

[34, 35, 36]. This paper develops an approach to error-correcting codes from the view-

point of geometric functional analysis (asymptotic convex geometry). It thus belongs to

a common ground of coding theory, signal processing, combinatorial geometry, and geo-

metric functional analysis. Our argument, outlined in Section 3, may be of independent

interest in geometric functional analysis.

Our main focus will be on words over the alphabet F = R or C. In applications,

these words may be formed of the coefficients of some signal (such as image or audio)
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with respect to some basis or overcomplete system (Fourier, wavelet, etc.). Finite alpha-

bets will be discussed in Section 5.

The simplest and most natural way to encode a vector x ∈ R
n into a vector y ∈ R

m

is a linear transform

y = Qx, (1.1)

where Q is given by an m × n matrix. A linear algebra argument gives that if m ≥ n + 2r

and the range of Q is generic1 then x can be recovered from y even if r coordinates of y

are corrupted. This gives an (n,m, r)-error-correcting code. However, the decoder for this

code has a huge computational complexity, as it involves a search through all r-element

subsets of the components of y. Then the problem is: how to reconstruct a vector y in

an n-dimensional subspace Y of R
m from a vector y ′ ∈ R

m that differs from y in at

most r coordinates? An important feature inherent to this error-correction problem over

the reals or complex numbers is that the errors may be of arbitrary magnitude. This is

not the case in the more classical error-correction problem over finite alphabets (such

as F = {0, 1}). This accounts for a need of completely different method to deal with such

errors, as well as for new challenges (such as stability of reconstruction).

A traditional and simple approach to denoising y ′, used in applications such as

signal processing, is the mean least square (MLS) minimization. One hopes that y is well

approximated by a solution to the minimization problem

min
u∈Y

‖u − y ′‖2, (MLS)

where ‖x‖2
2 =

∑
i |xi|

2. The solution to (MLS) is simply the orthogonal projection of

y ′ onto Y. This cannot recover y exactly, and even the approximation is typically poor

since we have no control of the magnitude of the errors in the corrupted coordinates. A

promising alternative approach is the basis pursuit (BP). We simply replace the 1-norm

by the 2-norm and expect y to be the exact and unique solution to the minimization prob-

lem

min
u∈Y

‖u − y ′‖1, (BP)

where ‖x‖1 =
∑

i |xi|. Thus a solution to (BP) is the metric projection of y ′ onto Y with

1That is, in general position with respect to all subspaces R
I , |I| = r.
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respect to the 1-norm. (BP) is cast as a linear programming problem, and can be attacked

with a variety of methods, such as the classical simplex method or more recent interior

point methods that yield polynomial time algorithms [9].

The potential of basis pursuit for exact reconstruction is illustrated by the fol-

lowing heuristics, essentially due to [15]. The solution u to (MLS) is the contact point

where the smallest Euclidean ball centered at y ′ meets the subspace Y, see Figure 1.1a.

That contact point is in general different from y. The situation is much better in (BP):

typically the solution coincides with y. The solution u to (BP) is the contact point where

the smallest octahedron centered at y ′ (the ball with respect to the 1-norm) meets Y, see

Figure 1.1b . Because the vector y−y ′ lies in a low-dimensional coordinate subspace, the

octahedron has a corner at y (or a wedge in high dimension). Thus, many subspaces Y

through y will miss the octahedron of radius y − y ′ (as opposed to the Euclidean ball).

This forces the solution u to (BP), which is the contact point of the octahedron, to coin-

cide with y.

The idea of using the 1-norm instead of the 2-norm for better data recovery has

been explored since mid-seventies in various applied areas, in particular geophysics,

and statistics (early history can be found in [38]). With the subsequent development of

fast interior point methods in linear programming, (BP) turned into an effectively solv-

able problem, and was put forward more recently by Donoho and his collaborators, trig-

gering massive experimental and theoretical work [4, 5, 7, 9, 12, 13, 14, 15, 16, 18, 19, 20,

21, 27, 37, 38, 39].
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The main result of this paper validates the basis pursuit method for most sub-

spaces Y under an asymptotically sharp condition on m,n, r. We thus prove that the basis

pursuit yields exact reconstruction for most subspaces Y in the Grassmanian Gm,n of

n-dimensional subspaces of R
m, equipped with the normalized Haar measure. Positive

absolute constants will be denoted throughout the paper by C, c, C1, . . ..

Theorem 1.1. Let m, n, and r < cm be positive integers such that

m = n + R, where R ≥ Cr log

(
m

r

)
. (1.2)

Then a random n-dimensional subspace Y in R
m in the Grassmanian satisfies the follow-

ing with probability at least 1−e−cR. Let y ∈ Y be an unknown vector, and let y ′ ∈ R
m be a

vector which differs from y on at most r coordinates. Then y can be exactly reconstructed

from y ′ as the solution to the minimization problem (BP). �

In an equivalent form, this theorem is an improvement of recent results of

Donoho [13] and of Candes and Tao [7], see Theorem 2.1.

1.1 Error-correcting codes

Theorem 1.1 implies a natural (n,m, r)-error-correcting code over R. The encoder (1.1) is

given by an m × n random orthogonal matrix2 Q. Its range Y is a random n-dimensional

subspace in R
m. The decoder takes a corrupted vector y ′, solves (BP), and outputs QTu =

Q−1u. Theorem 1.1 states that this encoder-decoder pair is an (n,m, r)-error-correcting

code with exponentially good probability≥ 1−e−cR, provided the assumption (1.2)holds.

Assumption (1.2) meets, up to an absolute constant, the Gilbert-Varshamov

bound which is fundamental in coding theory (see [34]): n/m ≥ 1 − H(Cr/n), where H(x)

is the entropy function. The encoder runs in quadratic time in the size n of the input, the

decoder runs in polynomial time.

1.2 Sharpness

The sufficient condition (1.2) is sharp up to an absolute constant C (see Section 5) and

is only slightly stronger than the necessary condition m ≥ n + 2r. The ratio ε = r/m in

2One can view it as the first ncolumns of a random matrix from the orthogonal group O(m) equipped with the
normalized Haar measure.
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(1.2) is the number of errors per letter in the noisy communication channel that maps y

to y ′. Thus ε should be considered as a quality of the channel, which is independent of

the message. Thus (1.2) is equivalent to

m ≥
(

1 + Cε log
1

ε

)
n. (1.3)

1.3 Transform coding

In the signal processing, the linear codes (1.1) are known as transform codes. The gen-

eral paradigm about transform codes is that the redundancies in the coefficients of y that

come from the excess of the dimension m > n should guarantee a stability of the signal

with respect to noise, quantization, erasures, and so forth. This is confirmed by an exten-

sive experimental and some theoretical work, see, for example, [3, 8, 10, 23, 24, 25, 26, 29]

and the bibliography contained therein. Theorem 1.1 states that most orthogonal trans-

form codes are good error-correcting codes.

2 Reconstruction of signals from linear measurements

A heuristic idea that motivates the reconstruction problem is that a function f from a

small class should be determined by few linear measurements. Linear measurements

are generally given by some linear functionals Xk in the dual space, which are fixed (in

particular are independent of f). Most common measurements are point evaluation func-

tionals; the problem there is to interpolate f between known values while keeping f in the

known (small) class. When the evaluation points are chosen at random, this becomes the

“proper learning” problem of the statistical learning theory (see [33]).

We will, however, be interested in general linear measurements. The proposal to

learn f from general linear measurements (sensing) has been originated recently from

a criticism of the current methodology of signal compression. Most of real-life signals,

such as images and sounds, seem to belong to small classes. This is because they carry

much of unwanted information that can be discarded with almost no perceptual loss,

which makes such signals easily compressible. Donoho [11] then questions the conven-

tional scheme of signal processing, where the whole signal must be first acquired (to-

gether with lots of unwanted information) and only then be compressed (throwing away

the unwanted part). Instead, can one directly acquire (sense) the essential part of the

signal, via few linear measurements? Similar issues are raised in [7]. We will operate

under the assumption that some technology allows us to take linear measurements in

certain fixed “directions” Xk.
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We will assume that our signal f is discrete, so we view it as a vector in R
m. Sup-

pose we can take linear measurements 〈f, Xk〉 with some fixed vectors X1, X2, . . . , XR in

R
m. Assuming that f belongs to a small class, how many measurements R are needed to

reconstruct f? And even when we prove that R measurements do determine f (uniquely

or approximately), the algorithmic issue remains unsettled: how can one reconstruct f

from these measurements?

The previous section suggests to reconstruct f as a solution to the basis pursuit

minimization problem

min ‖g‖1 subject to
〈
g, Xk

〉
=
〈
f, Xk

〉
, k = 1, . . . , R. (BP ′)

For the basis pursuit to work, the vectors Xk must be in a good position with respect

to all coordinate subspaces R
I, |I| ≤ r. A typical choice for such vectors would be the

independent standard Gaussian vectors3 Xk.

2.1 Functions with small support

In the class of functions with small support, one can hope for exact reconstruction. Can-

des and Tao [7] have indeed proved that every fixed function f with support | supp f| ≤ r

can indeed be recovered by (BP ′), correctly with the polynomial probability 1 − m− const,

from the R = Cr log m Gaussian measurements. However, the polynomial probability is

clearly not sufficient to deduce that there is one set vectors Xk that can be used to recon-

struct all functions f of small support.

The following equivalent form of Theorem 1.1 does yield a uniform exact recon-

struction. It provides us with one set of linear measurements from which we can effec-

tively reconstruct every signal of small support.

Theorem 2.1 (uniform exact reconstruction). Let m, r < cm and R be positive integers

satisfying R ≥ Cr log(m/r). The independent standard Gaussian vectors Xk in R
m satisfy

the following with probability at least 1 − e−cR. Let f ∈ R
m be an unknown function of

small support, | supp f| ≤ r. Then f can be exactly reconstructed from R measurements

〈f, Xk〉 as a solution to the basis pursuit problem (BP ′). �

This theorem gives uniformity in Candes-Tao result [7], improves the polynomial

probability to an exponential probability, and improves upon the number R of measure-

ments (which was R ≥ Cr log m in [7]). Donoho [11] proved a weaker form of Theorem 2.1

with R/r bounded below by some function of m/r.

3All the components of Xk are independent standard Gaussian random variables.
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Proof. Write g = f − u for some u ∈ R
m. Then (BP ′) reads as

min ‖u − f‖1 subject to
〈
u,Xk

〉
= 0, k = 1, . . . , R. (2.1)

�

The constraints here define a random (n = m − R)-dimensional subspace Y of R
m. Now

apply Theorem 1.1 with y = 0 and y ′ = f. It states that the unique solution to (2.1) is

u = 0. Therefore, the unique solution to (BP ′) is f.

2.2 Compressible functions

In a larger class of compressible functions [11], we can only hope for an approximate

reconstruction. This is a class of functions f that are well compressible by a known or-

thogonal transform, such as Fourier or wavelet. This means that the coefficients of f with

respect to a certain known orthogonal basis have a power decay. By applying an appro-

priate rotation, we can assume that this basis is the canonical basis of R
m, thus f satis-

fies

f∗(s) ≤ s−1/p, s = 1, . . . , m, (2.2)

where f∗ denotes a nonincreasing rearrangement of |f|. Many natural signals are com-

pressible for some 0 < p < 1, such as smooth signals and signals with bounded vari-

ations (see [7]), in particular most photographic images. Theorem 2.1 implies, by the

argument of [7], that functions compressible in some basis can be approximately re-

constructed from few fixed linear measurements. This is an improvement of a result of

Donoho [11].

Corollary 2.2 (uniform approximate reconstruction). Let m and r be positive integers.

The independent standard Gaussian vectors Xk in R
m satisfy the following with prob-

ability at least 1 − e−cR. Assume that an unknown function f ∈ R
m satisfies either (2.2)

for some 0 < p < 1 or ‖f‖1 ≤ 1 for p = 1. Then f can be approximately reconstructed from

R measurements 〈f, Xk〉: a unique solution g to the basis pursuit problem (BP ′) satisfies

‖f − g‖2 ≤ Cp

⎛
⎜⎜⎝

log

(
m

R

)

R

⎞
⎟⎟⎠

(1/p)−(1/2)

, (2.3)

where Cp depends on p only. �

Corollary 2.2 was proved by Donoho [11] under an additional assumption that

m ∼ CRα for some α > 1. Notice that in this case log(m/R) ∼ log m. Now this assumption



4026 M. Rudelson and R. Vershynin

is removed. Candes and Tao [7] proved Corollary 2.2 without the uniformity in f due to a

weaker (polynomial) probability. Finally, Corollary 2.2 also improves upon the approxi-

mation error (there is now the ratio m/r instead of m in the logarithm).

In a recent work independent of ours, Candes and Tao [6] have sharpened their

previous work [7]. They obtained results similar to those in the present paper, but their

approach is different.

3 Counting low-dimensional facets of polytopes

Theorem 1.1 turns out to be equivalent to a problem of counting lower-dimensional facets

of polytopes. Let Bm
1 denote the unit ball with respect to the 1-norm; it is sometimes

called the unit octahedron. The polar body is the unit cube Bm
∞ = [−1, 1]m. The conclu-

sion of Theorem 1.1 is then equivalent to the following statement: the affine subspace

z + Y is tangent to the unit octahedron at point z, where z = y ′ − y. This should happen

for all z from the coordinate subspaces R
I with |I| = r. By duality, this means that the

subspace Y⊥ intersects all (m − r)-dimensional facets of the unit cube. The section of the

cube by the subspace Y⊥ forms an origin-symmetric polytope of dimension R and with

2m facets.

Our problem can thus be stated as a problem of counting lower-dimensional

facets of polytopes. Consider an R-dimensional origin-symmetric polytope with 2m

facets. How many (R − r)-dimensional facets can it have? Clearly,4 no more than 2r
(
m
r

)
.

Does there exist a polytope with that many facets? Our ability to construct such a poly-

tope is equivalent to the existence of the efficient error-correcting code. Indeed, looking

at the canonical realization of such a polytope as a section of the unit cube by a sub-

space Y⊥, we see that Y⊥ intersects all the (m − r)-dimensional facets of the cube. Thus

Y satisfies the conclusion of Theorem 1.1. We can thus state Theorem 1.1 in the following

form.

Theorem 3.1. There exists an R-dimensional symmetric polytope with m facets and with

the maximal number of (R − r)-dimensional facets (which is 2r
(
m
r

)
), provided R ≥

Cr log(m/r). A random section of the cube forms such a polytope with probability 1−e−cR.

�

Note also that Theorem 3.1 provides a construction of the so-called neighborly

polytopes (see [28, Chapter 7] or [40]). An n-dimensional convex polytope is called

4Any such facet is the intersection of some r facets of the polytope of full dimension R− 1; there are mfacets to
choose from, each coming with its opposite by the symmetry.
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m-neighborly if any set of m vertices forms an (m − 1)-dimensional face. For symmetric

polytopes this definition has to be modified, since a face cannot contain a pair of oppo-

site vertices. A symmetric polytope is called m-neighborly if any set of m of its vertices,

which does not contain opposite pairs, forms an (m−1)-dimensional face. The neighborly

polytopes have been extensively studied recently in connection with computer science

problems (see, e.g., [17]). In this terminology Theorem 3.1 can be reformulated as fol-

lows.

Theorem 3.2. Let m, r, R be positive integers satisfying

R ≥ Cr log

(
m

r

)
. (3.1)

Then a random R-dimensional projection of the m-dimensional octahedron Bm
1 is an r-

neighborly symmetric polytope with 2m vertices with probability greater than 1 − e−cR.

�

The rest of the paper is organized as follows. In Section 4 we prove Theorem 1.1.

In Section 5 we discuss some optimality and robustness of the basis pursuit with appli-

cations to error-correcting codes over finite alphabets.

4 Proof of Theorem 1.1

4.1 Outline of the proof

We will use duality, which gives the following equivalent form of Theorem 1.1: a random

(m − n)-dimensional subspace E intersects all (m − r)-dimensional facets of a cube in

R
m. It will then suffice to show that the probability of intersection with a fixed facet is

suitably sufficiently large. This will be established by a proper use of the concentration

of measure technique.

The main difficulty is that the �∞ -norm defined by the unit cube (more precisely,

by its facet) has a bad Lipschitz constant, which impedes the use of concentration in-

equalities. To improve the Lipschitzness, we first project the facet onto a random sub-

space (within its affine span); the kernel of this projection will form a part of the random

subspace E. This will create a big Euclidean ball inside the projected facet. To prove this,

we will use the full strength of the estimate of Garnaev and Gluskin [22] on Euclidean

projections of a cube. The existence of the Euclidean ball inside a body creates the needed

Lipschitzness, so we can now use the concentration of measure technique.
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4.2 Notation

We will use the following standard notations throughout the proof. The p-norm (1 ≤ p <

∞) on R
m is defined by ‖x‖p

p =
∑

i |xi|
p, and for p = ∞ it is ‖x‖∞ = maxi |xi|. The unit ball

with respect to the p-norm on R
n is denoted by Bm

p . When the p-norm is considered on a

coordinate subspace R
I, I ⊂ {1, . . . , m}, the corresponding unit ball is denoted by BI

p.

The unit Euclidean sphere in a subspace E is denoted by S(E). The normalized ro-

tational invariant Lebesgue measure on S(E) is denoted by σE. The orthogonal projection

onto a subspace E is denoted by PE. The standard Gaussian measure on E (with the iden-

tity covariance matrix) is denoted by γH. When E = R
d, we write σd−1 for σE and γd for

γE.

4.3 Duality

We begin the proof of Theorem 1.1 with a typical duality argument, leading to the same

reformulation of the problem as in [7]. We claim that the conclusion of Theorem 1.1 fol-

lows from (and is actually equivalent to) the following separation condition:

(z + Y) ∩ interior
(
Bm

1

)
= ∅ ∀z ∈

⋃
|I|=r

BI
1. (4.1)

Indeed, suppose (4.1) holds. We apply it for

z :=
y − y ′

‖y − y ′‖1
(4.2)

noting that z ∈ ⋃|I|=r BI
1 holds, because y and y ′ differ in at most r coordinates. By (4.1),

(z + v) ∩ interior
(
Bm

1

)
= ∅ ∀v ∈ Y (4.3)

which implies

‖z + v‖1 ≥ 1 ∀v ∈ Y. (4.4)

Let u ∈ Y be arbitrary. Using the inequality above for v := (u − y)/‖u − y‖1, we conclude

that

‖u − y‖1 ≥ ‖y − y ′‖1 ∀u ∈ Y. (4.5)

This proves that y is indeed a solution to (BP). The solution to (BP) is unique with prob-

ability 1 in the Grassmanian. This follows from a direct dimension argument, see, for

example, [7].
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By Hahn-Banach theorem, the separation condition (4.1) is equivalent to the fol-

lowing: for every r-element set I ⊂ {1, . . . , m} and for every point z on the boundary of BI
1

there exists w = w(z) ∈ Y⊥ such that

〈w, z〉 = sup
x∈Bm

1

〈w, x〉 = ‖w‖∞ . (4.6)

This holds if and only if the components of w satisfy

wj = sign
(
zj

)
for j ∈ I,∣∣wj

∣∣ ≤ 1 for j ∈ Ic.
(4.7)

The set of vectors w in R
m that satisfy (4.7) form a (m − r)-dimensional facet of the unit

cube Bm
∞ . Then with E := Y⊥, we can say that the conclusion of Theorem 1.1 is equivalent

to the following. A random R-dimensional subspace E in R
m intersects all the (m − r)-

dimensional facets of the unit cube with probability at least 1 − e−cR.

It will be enough to show that E intersects one fixed facet with the probability

1− e−cR. Indeed, the probability that E misses some facet would be at most Ne−cR, where

N = 2r

(
m

r

)
≤ exp

(
Cr log

m

r

)
(4.8)

is the total number of facets. An appropriate choice of the constant C in (1.2) yields

Ne−cR ≤ e−c ′R.

4.4 Realizing a random subspace

We are to show that a random R-dimensional subspace E intersects one fixed (m − r)-

dimensional facet of the unit cube Bm
∞ with high probability. Such a facet F = FI,w is

determined by a subset I of {1, . . . , n} of cardinality r and by a vector w ∈ {−1, 1}I. Then

FI,w consists of all points in the cube Bn
∞ whose coordinates in I coincide with w. Without

loss of generality, we can assume that our facet is

F =
{(

w1, . . . , wm−r, 1, . . . , 1
)
, all

∣∣wj

∣∣ ≤ 1
}
, (4.9)
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Figure 4.1

whose center is

θ =

(
0, . . . , 0︸ ︷︷ ︸

m−r

, 1, . . . , 1

)
. (4.10)

The probability we are interested in is

P := Prob
{
E ∩ F �= ∅

}
. (4.11)

We will restrict our attention to the linear span of F,

lin(F) =
{(

w1, . . . , wm−r, t, . . . , t
)
, all wj ∈ R, t ∈ R

}
, (4.12)

and even to its affine span,

aff(F) =
{(

w1, . . . , wm−r, 1, . . . , 1
)
, all wj ∈ R

}
. (4.13)

Only the random affine subspace E ∩ aff(F) matters for us, because

P = Prob
{(

E ∩ aff(F)
) ∩ F �= ∅

}
. (4.14)
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The dimension of that affine subspace is almost surely

l := dim
(
E ∩ aff(F)

)
= R − r. (4.15)

We can realize the random affine subspace E∩aff(F) (or rather a random subspace

with the same law) by the following algorithm which is illustrated in Figure 4.1.

(1) Select a random variable D with the same law as dist(θ, E ∩ aff(F)).

(2) Select a random subspace L0 in the Grassmanian Gm−r,l. It will realize the

“direction” of E ∩ aff(F) in aff(F).

(3) Select a random point z on the Euclidean sphere D·S(L⊥
0 ) of radius D, accord-

ing to the uniform distribution on the sphere. Here L⊥
0 is the orthogonal

complement of L0 in R
m−r. The vector z will realize the distance from the

affine subspace E ∩ aff(F) to the center θ of F.

(4) Set L = θ + z + L0. Thus the random affine subspace L has the same law as

E ∩ aff(F).

Hence

P = Prob
{
L ∩ F �= ∅

}
= Prob

{(
z + L0v

) ∩ Bm−r
∞ �= ∅

}
= Prob

{
z ∈ PL⊥

0
Bm−r

∞

}
.

(4.16)

H := L⊥
0 is a random subspace in Gm−r,m−r−l = Gm−r,m−R. By the rotational invariance

of z ∈ D · S(H),

P =

∫

R+

∫

Gm−r,m−R

σH

(
D−1PHBm−r

∞

)
dν(H)dμ(D), (4.17)

where ν is the normalized Haar measure on Gm−r,m−R and μ is the law of D. We will

bound P in two steps:

(1) prove that the distance D is small with high probability;

(2) prove that a suitable multiple of the random projection PHBm−r
∞ has an al-

most full Gaussian (thus also spherical) measure.

4.5 The distance D from the center of the facet to a random subspace

We will first relate D, the distance to the affine subspace E ∩ aff(F), to the distance to

the linear subspace E∩ lin(F). Equivalently, we compute the length of the projection onto

E ∩ lin(F).
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θ0

f

PE∩lin(F)θ

Figure 4.2

Lemma 4.1.

∥∥PE∩lin(F)θ
∥∥

2
=

√
r

r + D2
‖θ‖2. (4.18)

�

Proof. Let f be the orthogonal projection of θ to the affine space L = E ∩ aff(F). Then

f − θ ⊥ θ and D = ‖f − θ‖2. Note that the vector f is orthogonal to L. Indeed, θ ⊥ aff(F) and

f − θ ⊥ L. Also, for any x ∈ L,

〈
PE∩lin(F)θ, x

〉
=
〈
θ, PE∩lin(F)x

〉
= 〈θ, x〉 = 0, (4.19)

so PE∩lin(F)θ ⊥ L as well. Therefore, both f and PE∩lin(F)θ belong to the space E∩ lin(F)∩L⊥,

and since dim(E ∩ lin(F) ∩ L⊥) = 1, f is a multiple of PE∩lin(F)θ.

By the similarity of the triangles with the vertices (0, θ, PE∩lin(F)θ) and (0, f, θ), we

conclude that

∥∥PE∩lin(F)θ
∥∥

2
=

r√
r + D2

=

√
r

r + D2
‖θ‖2 (4.20)

because ‖θ‖2 =
√

r. This completes the proof. �

The length of the projection of a fixed vector onto a random subspace in Lemma

4.1 is well known. The asymptotically sharp estimate was computed by Artstein [2],

but we will be satisfied with a much weaker elementary estimate, see, for example,

[32, Lemma 15.2.2].

Lemma 4.2. Let θ ∈ R
d−1 and let G be a random subspace in Gd,k. Then

Prob

{

c

√
k

d
‖θ‖2 ≤ ∥∥PGθ

∥∥
2
≤ C

√
k

d
‖θ‖2

}

≥ 1 − 2e−ck. (4.21)
�
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We apply this lemma for G = E∩ lin(F), which is a random subspace in the Grass-

manian of (l + 1)-dimensional subspaces of lin(F). Since dim lin(F) = m − r + 1, we have

Prob

{∥∥PE∩lin(F)θ
∥∥

2
≥ c

√
l + 1

m − r + 1
‖θ‖2

}

≥ 1 − 2e−cl. (4.22)

Together with Lemma 4.1 this gives

Prob

{

D ≤ c
√

m − r

√
r

l

}

≥ 1 − 2e−cl. (4.23)

Note that
√

m − r is the radius of the Euclidean ball circumscribed on the facet F. The

statement D ≤ √
m − r would only tell us that the random subspace E intersects the cir-

cumscribed ball, not yet the facet itself. The ratio r/l in (4.23) will be chosen logarithmi-

cally small, which will force E intersect also the facet F.

4.6 Gaussian measure of random projections of the cube

By (4.17) and (4.23),

P ≥
∫

Gm−r,m−R

σH

(
c√

m − r

√
l

r
PHBm−r

∞

)
dν(H) − 2e−cl. (4.24)

We can replace the spherical measure σH by the Gaussian measure γH via a simple and

known lemma, whose proof we include for reader’s convenience. A set K in a linear vector

space is called star shaped if x ∈ K implies tx ∈ K for all t ∈ [0, 1].

Lemma 4.3. Let K be a star-shaped set in R
d. Then

γd

(
c
√

d · K) − e−d ≤ σd−1(K) ≤ γd

(
C
√

d · K) · (1 + e−d
)
. (4.25)

�

Proof. Passing to polar coordinates, by the rotational invariance of the Gaussian mea-

sure we see that there exists a probability measure μ on R
+ so that the Gaussian mea-

sure of every set A can be computed as
∫

R+ σt(A)dμ(t), where σt denotes the normalized

Lebesgue measure on the Euclidean sphere of radius t in R
d. Since K is star shaped, σt(K)

is a nonincreasing function of t. Hence

γd(K) ≥
∫C

√
d

0

σt(K)dμ(t) ≥ σC
√

d(K) · γd

(
C
√

dBd
2

)
,

γd(K) ≤
∫c

√
d

0

dμ(t) + σc
√

d(K)
∫∞

c
√

d

dμ(t) ≤ γd

(
c
√

d · Bd
2

)
+ σc

√
d(K).

(4.26)
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The classical large deviation inequalities imply γd(c
√

d ·Bd
2 ) ≤ e−d and γd(C

√
dBd

2 ) ≥ 1−

e−d/2. Using the above argument for c
√

d ·K, we conclude that γd(c
√

d ·K) ≤ e−d +σd−1(K)

and γd(C
√

d · K) ≥ σd−1(K) · (1 − e−d/2). �

Using Lemma 4.3 in the space H of dimension d = m − R, we obtain

P ≥
∫

Gm−r,m−R

γH

(
c

√
m − R

m − r

√
l

r
PHBm−r

∞

)
dν(H) − 2e−cl − em−R. (4.27)

By choosing the absolute constant c in the assumption r < cm appropriately small, we

can assume that 2r < R < m/2. Thus

P ≥
∫

Gm−r,m−R

γH

(
c

√
R

r
PHBm−r

∞

)
dν(H) − 2e−cR. (4.28)

We now compute the Gaussian measure of random projections of the cube.

Proposition 4.4. Let H be a random subspace in Gn,n−k, k < n/2. Then the inequality

γH

(
C

√
log

n

k
PHBn

∞

)
≥ 1 − e−ck (4.29)

holds with probability at least 1 − e−ck in the Grassmanian. �

The proof of this estimate will follow from the concentration of Gaussian mea-

sure, combined with the existence of a big Euclidean ball inside a random projection of

the cube.

Lemma 4.5 (concentration of Gaussian measure). Let A be a measurable set in R
n. Then

for ε > 0,

γn(A) ≥ e−ε2n implies γn

(
A + Cε

√
nBn

2

) ≥ 1 − e−ε2n. (4.30)
�

With the stronger assumption γ(A) ≥ 1/2, this lemma is the classical concentra-

tion inequality, see [30, inequality (1.4)]. The fact that the concentration holds also for

exponentially small sets follows formally by a simple extension argument that was first

noticed by Amir and Milman in [1], see [30, Lemma 1.1].

The optimal result on random projections of the cube is due to Garnaev and

Gluskin [22].
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Theorem 4.6 (Euclidean projections of the cube [22]). Let H be a random subspace in

Gn,n−k, where k = αn < n/2. Then with probability at least 1 − e−ck in the Grassma-

nian,

c(α)PH

(√
nBn

2

) ⊆ PH

(
Bn

∞

) ⊆ PH

(√
nBn

2

)
, (4.31)

where

c(α) = c

√√√√ α

log
1

α

. (4.32)

�

Proof of Proposition 4.4. Let g1, g2, . . . be independent standard Gaussian random

variables. Then for a suitable positive absolute constant c and for every 0 < ε < 1/2,

γn

(
C

√
log

1

ε
Bn

∞

)
= Prob

{

max
1≤j≤n

∣∣gi

∣∣ ≤ C

√
log

1

ε

}

≥
(

1 − ε2

10

)n

≥ e−ε2n.

(4.33)

Since for every measurable set A and every subspace H one has γH(PHA) ≥ γ(A), we

conclude that

γH

(
C

√
log

1

ε
PHBn

∞

)
≥ e−ε2n for 0 < ε <

1

2
. (4.34)

Then by Lemma 4.5,

γH

(
C

√
log

1

ε
PHBn

∞ + Cε
√

nPHBn
2

)
≥ 1 − e−ε2n for 0 < ε <

1

2
. (4.35)

Theorem 4.6 tells us that for a random subspace H if ε = c
√

α = c
√

k/n, then Euclidean

ball is absorbed by the projection of the cube in (4.35):

ε
√

nPHBn
2 ⊂ C

√
log

1

ε
PHBn

∞ . (4.36)

Hence for a random subspace H and for ε as above we have

γH

(
C

√
log

1

ε
PHBn

∞

)
≥ 1 − e−ε2n, (4.37)

which completes the proof. �
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Coming back to (4.28), we will use Proposition 4.4 for a random subspace H in

the Grassmanian Gm−r,m−R. We conclude that if

c

√
R

r
≥ C

√
log

m − r

R − r
, (4.38)

then with probability at least 1 − e−cR in the Grassmanian,

γH

(
c

√
R

r
PHBm−r

∞

)
≥ 1 − e−cR. (4.39)

Since (m − r)/(R − r) ≤ m/r, the choice of R in (1.2) satisfies condition (4.38). Thus (4.28)

implies

P ≥ 1 − 3e−cR. (4.40)

This completes the proof of Theorem 1.1.

5 Optimality, robustness, and finite alphabets

5.1 Optimality

The logarithmic term in Theorems 1.1 and 2.1 is necessary, at least in the case of small r.

Indeed, combining formula (4.17) and Lemmas 4.1, 4.2, 4.3, we obtain

P ≤
∫

Gm−r,m−R

γH

(
c

√
R

r
PHBm−r

∞

)
dν(H) + 2e−cR. (5.1)

To estimate the Gaussian measure we need the following.

Lemma 5.1. Let x1, . . . ,xs be vectors in R
s. Then

γs

(
s∑

j=1

[
− xj, xj

]) ≤ γs

(
M · Bs

∞

)
, (5.2)

where M = maxj=1,...,s ‖xj‖2. �
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The sum in the lemma is understood as the Minkowski sum of sets of vectors,

A + B = {a + b | a ∈ A, b ∈ B}.

Proof. Let F = span(x1, . . . ,xs−1) and let V = F⊥. Let v ∈ V be a unit vector. Set Z =
∑s−1

j=1 [−xj, xj]. Then

γs

(
s∑

j=1

[
− xj, xj

])
=

∫

V

γF

((
s∑

j=1

[
− xj, xj

]
− tv

)
∩ F

)
dγV(t)

=

∫

[−PVxs,PVxs]
γF

(
Z + tPFxs

)
dγV(t).

(5.3)

By Anderson’s lemma (see [31]), γF(Z + tPFxs) ≤ γF(Z). Thus,

γs

(
s∑

j=1

[
− xj, xj

]) ≤ γV

([
− PVxs, PVxs

]) · γF(Z) ≤ γ1

(
[−M,M]

) · γF(Z). (5.4)

The proof of the lemma is completed by induction. �

The Gaussian measure of a projection of the cube can be estimated as follows.

Proposition 5.2. Let H be any subspace in Gn,n−k, k < n/2. Then

γH

(
c√
k

√
log

n

k
PHBn

∞

)
≤ e−cn/k. (5.5)

�

Proof. Decompose I into the disjoint union of the sets J1, . . . ,Js+1, so that each of the sets

J1, . . . ,Js contains k + 1 elements and (k + 1)s < n ≤ (k + 1)(s + 1). Let 1 ≤ j ≤ s. Let

Uj = H ∩ (PHei, i ∈ {1, . . . ,n} \ Jj)⊥, where e1, . . . ,en is the standard basis of R
n. Then Uj

is a one-dimensional subspace of H. Set

xj =
∑

i∈Jj

εiPHei, (5.6)

where the signs εi ∈ {−1, 1} are chosen to maximize ‖PUj
xj‖2. Let E = span(x1, . . . ,xs−1).

Since PUj
Bn

∞ = [−xj, xj], we get

PHBn
∞ ∩ E =

s∑

j=1

[
− xj, xj

]
, (5.7)
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where the sum is understood in the sense of Minkowski addition. Since ‖PUJ
‖ = 1, ‖xj‖2 ≤

C
√

k and by Lemma 5.1,

γE

(
c̄
√

log s√
k

s∑

j=1

[
− xj, xj

]) ≤ γE

(
c ′√log s · BE

∞

) ≤ e−cs (5.8)

for some appropriately chosen constant c̄. Finally, log-concavity of the Gaussian measure

implies that for any convex symmetric body K ⊂ H,

γH(K) ≤ γE(K ∩ E). (5.9)

�

Combining (5.1) and (5.5) we obtain P ≤ 2e−cR, whenever R ≤ c log(m/r).

5.2 Robustness and codes for finite alphabets

Robustness is a natural feature of the basis pursuit method. The solution to (BP) is stable

with respect to the 1-norm in the same way as the solution to (MLS) is stable with respect

to the 2-norm. Indeed, once Theorem 1.1 holds, the unknown vector y in Theorem 1.1 can

be approximately recovered from y ′′ = y ′+h, where h ∈ R
m is any additional error vector

of small 1-norm. Namely, the solution u to the basis pursuit problem

min
u∈Y

‖u − y ′′‖1 (5.10)

satisfies

‖u − y‖1 ≤ C ′‖h‖1 (5.11)

(see, e.g., [7]). This implies a possibility of quantization of the coefficients in the process

of encoding and yields robust error-correcting codes over alphabets of polynomial size,

with a Gilbert-Varshamov-type bound, and with quadratic time encoders and polyno-

mial time decoders.

The following is the (m,n, r)-error-correcting code under the Gilbert-Varshamov-

type assumption (1.2), with input words x over the alphabet {1, . . . , p} and the encoded

words y over the alphabet {1, . . . , Cpn3/2}.

The construction is the same as in (1.1); we just have to introduce quantization.

The encoder takes x ∈ {1, . . . , p}n, computes y = Qx, and outputs the ŷ whose coeffi-

cients are the coefficients of y quantized with the uniform quantizer with step 1/4C ′m.
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Then ŷ ∈ (1/4C ′m)Zm ∩ [−p
√

n, p
√

n]m, which by rescaling can be identified with {1, . . . ,

Cpn3/2}m because we can assume that m ≤ 2n. The decoder takes y ′ ∈ (1/4C ′m)Zm,

finds solution u to (BP) with Y = range(Q), inverts to x ′ = QTu, and outputs x̂ ′ whose

coefficients are coefficients of x ′ quantized with the uniform quantizer with step 1.

This is indeed an (m,n, r)-error-correcting code. If y ′ differs from ŷ on at most r

coordinates, this and the condition ‖ŷ − y‖1 ≤ 1/4C ′ imply by the robustness that ‖u −

y‖1 ≤ 1/4. Hence ‖x ′ − x‖2 = ‖QT (u − y)‖2 = ‖u − y‖2 ≤ ‖u − y‖1 ≤ 1/4. Thus x̂ ′ = x, so

the decoder recovers x from y ′ correctly.

The robustness also implies a “continuity” of our error-correcting codes. If the

number of corrupted coordinates in the received message y ′ is bigger than r but is still

a small fraction, then the (m,n, r)-error-correcting code above can still recover y up to

some small fraction of the coordinates.
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