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ESTIMATION IN HIGH DIMENSIONS:
A GEOMETRIC PERSPECTIVE

ROMAN VERSHYNIN

ABSTRACT. This tutorial paper provides an exposition of a flexible geo-
metric framework for high dimensional estimation problems with con-
straints. The paper develops geometric intuition about high dimen-
sional sets, justifies it with some results of asymptotic convex geometry,
and demonstrates connections between geometric results and estimation
problems. The theory is illustrated with applications to sparse recov-
ery, matrix completion, quantization, linear and logistic regression and
generalized linear models.
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2 ROMAN VERSHYNIN

1. INTRODUCTION

1.1. Estimation with constraints. This paper provides an exposition of
an emerging mathematical framework for high-dimensional estimation prob-
lems with constraints. In these problems, the goal is to estimate a point
@ which lies in a certain known feasible set K C R™, from a small sample
Y1,-..,Ym of independent observations of . The point & may represent
a signal in signal processing, a parameter of a distribution in statistics, or
an unknown matrix in problems of matrix estimation or completion. The
feasible set K is supposed to represent properties that we know or want to
impose on x.

The geometry of the high dimensional set K is a key to understanding
estimation problems. A powerful intuition about what high dimensional
sets look like has been developed in the area known as asymptotic convex
geometry [4, 22]. The intuition is supported by many rigorous results, some
of which can be applied to estimation problems. The main goals of this
paper are:

(a) develop geometric intuition about high dimensional sets;

(b) explain results of asymptotic convex geometry which validate this
intuition;

(c) demonstrate connections between high dimensional geometry and high
dimensional estimation problems.

This paper is not a comprehensive survey but is rather a tutorial. It
does not attempt to chart vast territories of high dimensional inference that
lie on the interface of statistics and signal processing. Instead, this paper
proposes a useful geometric viewpoint, which could help us find a common
mathematical ground for many (and often dissimilar) estimation problems.

1.2. Quick examples. Before we proceed with a general theory, let us
mention some concrete examples of estimation problems that will be cov-
ered here. A particular class of estimation problems with constraints is
considered in the young field of compressed sensing [16, 36, 12, 32]. There
K is supposed to represent sparsity, thus K usually consists of vectors that
have few non-zero coefficients. Sometimes more restrictive structured spar-
sity assumptions are placed, where only certain arrangements of non-zero
coefficients are allowed [5, 58]. The observations y; in compressed sensing
are assumed to be linear in @, which means that y; = (a;,x). Here a;
are typically i.i.d. vectors drawn from some known distribution in R™ (for
example, normal).

Another example of estimation problems with constraints is the matrixz
completion problem [8, 9, 34, 29, 62, 59] where K consists of matrices with
low rank, and y1,...,yn is a sample of matrix entries. Such observations
are still linear in .
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In general, observations do not have to be linear; good examples are binary
observations y; € {—1, 1}, which satisfy y; = sign({a;, x)), see [7, 33, 54, 55],
and more generally Ey; = 0({a;, x)), see [56, 2, 57].

In statistics, these classes of estimation problems can be interpreted as
linear regression (for linear observations with noise), logistic regression (for
binary observations) and generalized linear models (for more general non-
linear observations).

All these examples, and more, will be explored in this paper. However,
our main goal is to advance a general approach, which would not be tied to
a particular nature of the feasible set K. Some general estimation problems
of this nature were considered in [49, 3] for linear observations and in [56,
55, 2, 57| for non-linear observations.

1.3. Plan of the paper. In Seciton 2.1, we introduce a general class of
estimation problems with constraints. We explain how the constraints (given
by feasible set K) represent low-complezity structures, which could make it
possible to estimate x from few observations.

In Section 3, we make a short excursion into the field of asymptotic convex
geometry. We explain intuitively the shape of high-dimensional sets K and
state some known results supporting this intuition. In view of estimation
problems, we especially emphasize one of these results — the so-called M*
bound on the size of high-dimensional sections of K by a random subspace F.
It depends on the single geometric parameter of K that quantifies the com-
plexity of K; this quantity is called the mean width. We discuss mean width
in some detail, pointing out its connections to convex geometry, stochastic
processes, and statistical learning theory.

In Section 4 we apply the M* bound to the general estimation problem
with linear observations. We formulate an estimator first as a convex feasi-
bility problem (following [49]) and then as a convex optimization problem.

In Section 5 we prove a general form of the M* bound. Our proof bor-
rowed from [55] is quite simple and instructive. Once the M* bound is stated
in the language of stochastic processes, it follows quickly by application of
symmetrization, contraction and rotation invariance.

In Section 6, we apply the general M* bound to estimation problems;
observations here are still linear but can be noisy. Examples of such prob-
lems include sparse recovery problems and linear regression with constraints,
which we explore in Section 7.

In Section 8, we extend the theory from Gaussian to sub-gaussian obser-
vations. A sub-gaussian M* bound (similar to the one obtained in [49]) is
deduced from the previous (Gaussian) argument followed by an application
of a deep comparison theorem of X. Fernique and M. Talagrand (see [64]).

In Section 9 we pass to ezxact recovery results, where an unknown vector
a can be inferred from the observations y; without any error. We present a
simple geometric argument based on Y. Gordon’s “escape through a mesh”
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theorem [28]. This argument was first used in this context in [60] and was
pushed forward for general feasible sets in [13].

In Section 10, we explore matrix estimation problems. We first show how
the general theory applies to a low-rank matriz recovery problem. Then
we address a matriz completion problem with a short and self-contained
argument from [57].

Finally, we pass to non-linear observations. In Section 11, we consider
single-bit observations y; = sign (a;, x). Analogously to linear observations,
there is a clear geometric interpretation for these as well. Namely, the
estimation problem reduces in this case to a pizza cutting problem about
random hyperplane tessellations of K. We discuss a result from [55] on this
problem, and we apply it to estimation by formulating it as a feasibility
problem.

Similarly to what we did for linear observations, we replace the feasibility
problem by optimization problem in Section 12. Unlike before, such replace-
ment is not trivial. We present a simple and self-contained argument from
[56] about estimation from single-bit observations via convex optimization.

In Section 13 we discuss the estimation problem for general (not only
single-bit) observations following [57]. The new crucial new step of estima-
tion is the metric projection onto the feasible set; this projection was studied
recently in [14] and [57].

In Section 14, we outline some natural extensions of the results for general
distributions and to a localized version of mean width.

1.4. Acknowledgements. The author is grateful to Yaniv Plan for useful
comments and to Vladimir Koltchinskii for helpful discussions.

2. HIGH DIMENSIONAL ESTIMATION PROBLEMS

2.1. Estimating vectors from random observations. Suppose we want
to estimate an unknown vector & € R"™. In signal processing,  could be a
signal to be reconstructed, while in statistics  may represent a parameter of
a distribution. We assume that information about & comes from a sample of
independent and identically distributed observations ¥1,...,ym € R, which
are drawn from a certain distribution which depends on @:

y; ~ distribution(x), ¢=1,...,m.
So, we want to estimate & € R™ from the observation vector

y=(y1,..-,ym) € R™.
One example of this situation is the classical linear regression problem in
statistics,
y=XpB+v, (2.1)
in which one wants to estimate the coeflicient vector 3 from the observation

vector y. We will see many more examples later; for now let us continue
with setting up the general mathematical framework.
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2.2. Low complexity structures. It often happens that we know in ad-
vance, believe in, or want to enforce, some properties of the vector . We
can formalize such extra information as the assumption that

re K

where K is some fixed and known subset of R”, a feasible set. This is a very
general and flexible assumption, as we are not stipulating any properties of
the feasible set K.

To give a quick example, in the regression problem (2.1), one often believes
that B is a sparse vector, i.e. among its coefficients only few are non-zero.
This is important because it means that a few explanatory variables can
adequately explain the dependent variable. So one could choose K to be a
set of all s-sparse vectors in R™ — those with at most s non-zero coordinates,
for a fixed sparsity level s < n. More examples of natural feasible sets K
will be given later.

Figure 1 illustrates the estimation problem. Sampling can be thought as
of a map taking x € K to y € R™; estimation is a map from y € R™ to
@ € K and is ideally the inverse of sampling.

1.
m/sf%

T estimation
R™ R™

Figure 1. Estimation problem in high dimensions

How can a prior information encoded by K help in high-dimensional es-
timation? Let us start with a quick and non-rigorous argument based on
the number of degrees of freedom. The unknown vector  has n dimensions
and the observation vector y has m dimensions. So in principle, it should
be possible to estimate x from y with

m = O(n)

observations. Moreover, this bound should be tight in general.

Now let us add the restriction that * € K. If K happens to be low-
dimensional, with algebraic dimension dim(K) = d < n, then z has d
degrees of freedom. Therefore, in this case the estimation should be possible
with fewer observations,

m = O(d) = o(n).

It rarely happens that feasible sets of interest literally have small alge-
braic dimension. For example, the set of all s-sparse vectors in R™ has full
dimension n. Nevertheless, the intuition about low-dimensionality remains
valid. Natural feasible sets, such as regression coefficient vectors, images,
adjacency matrices of networks, do tend to have low complezity. Formally K
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may live in an n-dimensional space where n can be very large, but the actual
complexity of K, or “effective dimension” (which will formally quantify in
Section 3.5.6) is often much smaller.

This intuition motivates the following three goals, which we will discuss
in detail in this tutorial:

1. Quantify the complexity of general subsets K of R".

2. Demonstrate that estimation can be done with few observations as
long as the feasible set K has low complexity.

3. Design estimators that are algorithmically efficient.

We will start by developing intuition about the geometry of sets K in
high dimensions. This will take us a short excursion into high dimensional
convex geometry. Convexity assumption will not be imposed later, but it is
going to be useful for developing a geometric intuition.

3. AN EXCURSION INTO HIGH DIMENSIONAL CONVEX GEOMETRY

High dimensional convex geometry studies convex subsets K of R™ for
large n. This area is sometimes also called asymptotic convex geometry
(referring to n increasing to infinity) and geometric functional analysis. The
tutorial [4] could be an excellent first contact with this area; the survey [26]
and books [50, 53, 22] cover more material and in more depth.

3.1. What do high dimensional convex bodies look like? A central
problem in high dimensional convex geometry is — what do convex bodies look
like in high dimensions? A heuristic answer to this question is — a convex
body K usually consists of a bulk and outliers. The bulk makes up most of
the volume of K, but it is usually small in diameter. The outliers contribute
little to the volume, but they are large in diameter.

If K is properly scaled, the bulk usually looks like a Euclidean ball. The
outliers look like thin, long tentacles. This is best seen on Figure 2a, which
depicts V. Milman’s vision of high dimensional convex sets [48]. This picture
does not look convex, and there is a good reason for this. The volume in
high dimensions scales differently than in low dimensions — dilating of a
set by the factor 2 increases its volume by the factor 2". This is why it is
not surprising that the tentacles contain exponentially less volume than the
bulk. Such behavior is best seen if a picture looks “hyperbolic”. Although
not convex, pictures like Figure 2 more accurately reflect the distribution of
volume in higher dimensions.

Ezample 3.1 (The ¢; ball). To illustrate this heuristic on a concrete example,
consider the set

K =B ={zeR": |z|; <1},

i.e. the unit ¢1-ball in R™. The inscribed Euclidean ball in K, which we will
denote by B, has diameter 2/y/n. One can then check that volumes of B
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(a) A general convex set (b) The ¢, ball

Figure 2. V. Milman’s “hyperbolic” drawings of high dimen-
sional convex sets

and of K are comparable:

vol, (B)Y/™ = vol, (K)V/™ = %
Therefore, B (perhaps inflated by a constant factor) forms the bulk of K.
It is round, makes up most of the volume of K, but has small diameter.
The outliers of K are thin and long tentacles protruding quite far in the
coordinate directions. This can be best seen in a hyperbolic drawing, see
Figure 2b.

3.2. Concentration of volume. The heuristic representation of convex
bodies just described can be supported by some rigorous results about con-
centration of volume.

These results assume that K is isotropic, which means that the random
vector X distributed uniformly in K has zero mean and identity covariance:

EX =0, EXX'"=1I, (3.1)

Isotropy is just an assumption of proper scaling — one can always make
a convex body K with nonempty interior isotropic by applying a suitable
invertible linear transformation.

With this scaling, most of the volume of K is located around the Euclidean
sphere of radius y/n. Indeed, taking traces of both sides of the second
equation in (3.1), we obtain

E X3 = n.

Therefore, by Markov’s inequality, at least 90% of the volume of K is con-
tained in a Euclidean ball of size O(y/n). Much more powerful concentration
results are known — the bulk of K lies very near the sphere of radius v/n, and
the outliers have exponentially small volume. This is the content of the two
major results in high dimensional convex geometry, which we summarize in
the following theorem.
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Theorem 3.2 (Distribution of volume in high-dimensional convex sets).
Let K be an isotropic conver subset of R, and let X be a random vector
uniformly distributed in K. Then the following is true:

1. (Concentration of volume) For every t > 1, one has

P {||X|l2 > tv/n} < exp(—ctv/n).
2. (Thin shell) For every ¢ € (0,1), one has

P {‘HXHQ - \/ﬁ‘ > eﬁ} < Cexp(—ce3nl/?).
Here and later in this paper, C, c denote positive absolute constants.

The concentration part of Theorem 3.2 is due to G. Paouris [51]; see [1] for
an alternative and shorter proof. The thin shell part is an improved version
of a result of B. Klartag [35], which is due to O. Guedon and E. Milman
[30].

3.3. Low dimensional random sections. The intuition about bulk and
outliers of high dimensional convex sets K can help us to understand what
random sections of K should look like. Suppose F is a random subspace of
R™ with fixed dimension d, i.e. F is drawn at random from the Grassmanian
manifold G, 4 according to the Haar measure. What does the section KN E
look like on average?

If d is sufficiently small, then we should expect E to pass through the
bulk of K and miss the outliers, as those have very small volume. Thus, if
the bulk of K is a round ball,! we should expect the section K N E to be a
round ball as well; see Figure 3.

E

Figure 3. Random section of a high dimensional convex set

There is a rigorous result which confirms this intuition. It is known as
Dvoretzky’s theorem [20, 21], which we shall state in the form of V. Milman

I This intuition is a good approximation to truth, but it should to be corrected. While
concentration of volume tells us that the bulk is contained in a certain Euclidean ball (and
even in a thin spherical shell), it is not always true that the bulk is a Euclidean ball (or
shell); a counterexample is the unit cube [—1,1]". In fact, the cube is the worst convex
set in the Dvoretzky theorem, which we are about to state.
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[45]; expositions of this result can be found e.g. in [53, 22]. Dvoretzky-
Milman’s theorem has laid a foundation for the early development of asymp-
totic convex geometry. Informally, this result says that random sections of
K of dimension d ~ logn are round with high probability.

Theorem 3.3 (Dvoretzky’s theorem). Let K be an origin-symmetric convex
set in R™ such that the ellipsoid of maximal volume contained in K is the
unit Euclidean ball BY. Fix e € (0,1). Let E be a random subspace of
dimension d = ce~?logn drawn from the Grassmanian Gn,a according to
the Haar measure. Then there exists R > 0 such that with high probability
(say, 0.99) we have

(1—e)B(R)CKNEC(1+¢)B(R).
Here B(R) is the centered Euclidean ball of radius R in the subspace E.

Several important aspects of this theorem are not mentioned here — in
particular how, for a given convex set K, to compute the radius R and the
largest dimension d of round sections of K. These aspects can be found in
modern treatments of Dvoretzky theorem such as [53, 22].

3.4. High dimensional random sections? Dvoretzky’s Theorem 3.3 de-
scribes the shape of low dimensional random sections K N E, those of dimen-
sions d ~ logn. Can anything be said about high dimensional sections, those
with small codimension? In this more difficult regime, we can no longer ex-
pect such sections to be round. Instead, as the codimension decreases, the
random subspace E becomes larger and it will probably pick more and more
of the outliers (tentacles) of K. The shape of such sections K N E is difficult
to describe.

Nevertheless, it turns out that we can accurately predict the diameter of
KNE. A bound on the diameter is known in asymptotic convex geometry as
the low M™ estimate, or M™* bound. We will state this result in Section 3.6
and prove it in Section 5. For now, let us only mention that M* bound is
particularly attractive in applications as it depends only on two parameters
— the codimension of £ and a single geometric quantity, which informally
speaking, measures the size of the bulk of K. This geometric quantity is
called the mean width of K. We will pause briefly to discuss this important
notion.

3.5. Mean width. The concept of mean width captures important geo-
metric characteristics of sets in R™. One can mentally place it in the same
category as other classical geometric quantities like volume and surface area.

Consider a bounded subset K in R™. (The convexity requirement will not
be imposed from now on.) The width of K in the direction of a given unit
vector n € S" ! is defined as the width of the smallest slab between two
parallel hyperplanes with normals 7 that contains K; see Figure 4.
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Figure 4. Width of K in the direction of n

Analytically, we can express the width in the direction of n as

sup <na u — 'U> = Ssup <na Z> )
ueK zeK—K

where K — K = {u —v: u,v € K} is the Minkowski sum of K and —K.
Averaging over 1 uniformly distributed on the sphere S~ !, we can define
the spherical mean width of K:
w(K):=E sup (n,z).
zeK-K

It will be convenient to replace the spherical random vector 17 ~ Unif (S"~1)
by the standard Gaussian random vector g ~ N (0, I,); the advantage is that
g has independent coordinates while 17 does not.

Definition 3.4 (Gaussian mean width). The Gaussian mean width of a
bounded subset K of R™ is defined as
w(K):=E sup (g,u), (3.2)
uceK-K
where g ~ N(0,1,) is a standard Gaussian random vector in R™. We will
often refer to Gaussian mean width as simply the mean width.

3.5.1. Simple properties of mean width. Observe first that the Gaussian
mean width is about /n times larger than the spherical mean width. To see
this, using rotation invariance we realize n as 1 = g/||g||2. Next, we recall
that the direction and magnitude of a standard Gaussian random vector are
independent, so 1 is independent of ||g||2. It follows that

w(K) =E|gllz - w(K).

Further, the factor E ||g||2 is of order y/n; this follows, for example, from
known bounds on the x? distribution:

evn <E|glls < v (3.3)
where ¢ > 0 is an absolute constant. Therefore, the Gaussian and spherical
versions of mean width are equivalent (up to scaling factor /n), so it is
mostly a matter of personal preference which version to work with. In this
paper, we will mostly work with the Gaussian version.

Proposition 3.5. The mean width is invariant under translations, orthog-
onal transformations, and taking convexr hulls. O
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Especially useful is the last property, which states that
w(conv(K)) = w(K). (3.4)

This property will come handy later, when we consider convex relaxations
of optimization problems.

3.5.2. Computing mean width on examples. Let us illustrate the notion of
mean width on some simple examples.

Ezample 3.6. If K is the unit Euclidean ball BY or sphere S"~!, then
w(K) =E|gll2 < vn
and also w(K) > c¢y/n, by (3.3).

Ezample 3.7. Let K is a subset of By and it has linear algebraic dimension
d. Then K lies in a d-dimensional unit Euclidean ball, so as before we have

w(K) < V.
FEzample 3.8. Let K is a finite subset of BY. Then

w(K) < Cy/log|K]|.

This follows from a known and simple computation of the expected maxi-
mum of k£ = |K| Gaussian random variables.

Ezample 3.9 (Sparsity). Let K consist of all unit s-sparse vectors in R™ —
those with at most s non-zero coordinates:

K={zcR": [lz[z=1, [=]o < s}

Here ||x||p denotes the number of non-zero coordinates of . A simple com-
putation (see e.g. [56, Lemma 2.3]) shows that

cy/slog(n/s) <w(K) < Cy/slog(n/s).

Ezample 3.10 (Low rank). Let K consist of dy X dy matrices with unit
Frobeinus norm and rank at most 7:

K ={X e R"*% . | X||p =1, rank(X) < r}.

We will see in Proposition 10.4,

w(K) < C\/r(dy + da).

3.5.3. Computing mean width algorithmically. Can we estimate the mean
width of a given set K fast and accurately? Gaussian concentration of
measure (see [53, 40, 39]) implies that, with high probability, the random
variable

w(K,g) = sup (g,u)

is close to its expectation w(K'). Therefore, to estimate w(K), it is enough
to generate a single realization of a random vector g ~ N (0, I,,) and compute
w(K, g); this should produce a good estimator of w(K).
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Since we can convexify K without changing the mean width by Propo-
sition 3.5, computing this estimator is a conver optimization problem (and
often even a linear problem if K is a polytope).

3.5.4. Computing mean width theoretically. Finding theoretical estimates on
the mean width of a given set K is a non-trivial problem. It has been ex-
tensively studied in the areas of probability in Banach spaces and stochastic
processes.

Two classical results in the theory of stochastic processes — Sudakov’s
inequality (see [40, Theorem 3.18]) and Dudley’s inequality (see [40, Theo-
rem 11.17]) — relate the mean width to the metric entropy of K. Let N (K, t)
denote the smallest number of Fuclidean balls of radius ¢ whose union covers
K. Usually N(K,t) is referred to as a covering number of K, and log N (K, t)
is called the metric entropy of K.

Theorem 3.11 (Sudakov’s and Dudley’s inequalities). For any bounded
subset K of R™, we have

csupty/log N(K,t) <w(K) < C’/ V0og N(K,t) dt.
>0 0

The lower bound is Sudakov’s inequality and the upper bound is Dudley’s
mequality.

Neither Sudakov’s nor Dudley’s inequality are tight for all sets K. A
more advanced method of generic chaining produces a tight (but also more
complicated) estimate of the mean width in terms of majorizing measures;
see [64].

Let us only mention some other known ways to control mean width. In
some cases, comparison inequalities for Gaussian processes can be useful,
especially Slepian’s and Gordon’s; see [40, Section 3.3]. There is also a
combinatorial approach to estimating the mean width and metric entropy,
which is based on VC-dimension and its generalizations; see [41, 44].

3.5.5. Mean width and Gaussian processes. The theoretical tools of estimat-
ing mean width we just mentioned, including Sudakov’s, Dudley’s, Slepian’s
and Gordon’s inequalities, have been developed in the context of stochastic
processes. To see the connection, consider the Gaussian random variables
G4 = (g, u) indexed by points u € R™. The collection of these random vari-
ables (Gy)uck -k forms a Gaussian process, and the mean width measures
the size of this process:

w(K)=FE sup Gy.
ucK-K
In some sense, any Gaussian process can be approximated by a process
of this form. We will return to the connection between mean width and
Gaussian processes in Section 5 where we prove the M* bound.
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3.5.6. Mean width, complexity and effective dimension. In the context of
stochastic processes, Gaussian mean width (and its non-gaussian variants)
play an important role in statistical learning theory. There it is more natural
to work with classes F of real-valued functions on {1,...,n} than with
geometric sets K C R™. (We identify a vector in R™ with a function on
{1,...,n}.) The Gaussian mean width serves as a measure of complexity of
a function class in statistical learning theory, see [42]. It is sometimes called
Gaussian complezity and is usually denoted o (F).

To get a better feeling of mean width as complexity, assume that K lies
in the unit Euclidean ball BY. The square of the mean width, w(K)?,
may be interpreted as the effective dimension of K. By Example 3.7, the
effective dimension is always bounded by the linear algebraic dimension.
However, unlike algebraic dimension, the effective dimension is robust — a

small perturbation of K leads to a small change in w(K)2.

3.6. Random sections of small codimension: M* bound. Let us re-
turn to the problem we posed in Section 3.4 — bounding the diameter of
random sections K N E where E' is a high-dimensional subspace. The fol-
lowing important result in asymptotic convex geometry gives a good answer
to this question.

Theorem 3.12 (M* bound). Let K be a bounded subset of R". Let E be a
random subspace of R™ of a fixed codimension m, drawn from the Grassma-
nian Gppn—m according to the Haar measure. Then

Cw(K)
T

We will prove a stronger version of this result in Section 5. The first
variant of M* bound was found by V. Milman [46, 47]; its present form is
due to A. Pajor and N. Tomczak-Jaegermann [52]; an alternative argument
which yields tight constants was given by Y. Gordon [28]; an exposition of
M* bound can be found in [53, 40].

Ediam(K N E) <

To understand the M* bound better, it is helpful to recall from Sec-
tion 3.5.1 that w(K)/\/n is equivalent to the spherical mean width of K.
Heuristically, the spherical mean width measures the size of the bulk of K.

For subspaces E of not very high dimension, where m = Q(n), the M*
bound states that the size of the random section K N E is bounded by
the spherical mean width of K. In other words, subspaces E of proportional
dimension passes through the bulk of K and ignores the outliers ( “tentacles”),
just as Figure 3 illustrates. But when the dimension of the subspace E grows
toward n (so the codimension m becomes small), the diameter of K N E also
grows by a factor of y/n/m. This gives a precise control of how E in this
case interferes with the outliers of K.
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4. FROM GEOMETRY TO ESTIMATION: LINEAR OBSERVATIONS

Having completed the excursion into geometry, we can now return to the
high-dimensional estimation problems that we started to discuss in Section 2.
To recall, our goal is to estimate an unknown vector

xzc K CR"
that lies in a known feasible set K, from a random observation vector

y:(yla"'aym) eRma

whose coordinates y; are random i.i.d. observations of x.

So far, we have not been clear about possible distributions of the ob-
servations y;. In this section, we will study perhaps the simplest model —
Gaussian linear observations. Consider i.i.d. standard Gaussian vectors

a; ~ N(Ov In)

and define
yi = (a;,x)y, i=1,...,m.
Thus the observation vector y depends linearly on . This is best expressed
in a matrix form:
y = Ax.

Here A in an m x n Gaussian random matrix, which means that the entires
of A are ii.d. N(0,1) random variables; the vectors a; form the rows of A.

The interesting regime is when when the number of observations is smaller
than the dimension, i.e. when m < n. In this regime, the problem of
estimating € R” from y € R™ is ill posed. (In the complementary regime,
where m > n, the linear system y = Ax is well posed, so the solution is
trivial.)

4.1. Estimation based on M* bound. Recall that we know two pieces
of information about x:

1. « lies in a known random affine subspace {z' : Az’ = y};
2. zx lies in a known set K.

Therefore, a good estimator of & can be obtained by picking any vector Z
from the intersection of these two sets; see Figure 5. Moreover, since just
these two pieces of information about x are available, such estimator is best
possible in some sense.

x
x

Figure 5. Estimating & by any vector Z in the intersection
of K with the affine subspace {’ : Az’ = y}
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How good is such estimate? The maximal error is, of course, the distance
between two farthest points in the intersection of K with the affine subspace
{z' : Aa’ = y}. This distance in turn equals the diameter of the section of
K by this random subspace. But this diameter is controlled by M™* bound,
Theorem 3.12. Let us put together this argument more rigorously.

In the following theorem, the setting is the same as above: K C R" is a
bounded subset, € K is an unknown vector and y = Ax is the observation
vector, where A is an m x n Gaussian matrix.

Theorem 4.1 (Estimation from linear observations: feasibility program).
Choose T to be any vector satisfying

xeK and Az =y. (4.1)
Then

~ Cw(K)
— < .
Eplle=ale = =00
Proof. We apply the M* bound, Theorem 3.12, for the set K — K and the
subspace E = ker(A). Rotation invariance of Gaussian distribution implies
that E' is uniformly distributed in the Grassmanian G, ;,—m, as required by
the M* bound. Moreover, it is straightforward to check that w(K — K) <
2w(K). It follows that

Cw(K)
T

It remains to note that since T,z € K and AT = Az =y, we have T — x €
(K - K)NE. O

Ediam((K — K)N E) <

The argument we just described was first suggested by S. Mendelson,
A. Pajor and N. Tomczak-Jaegermann [49].

4.2. Estimation as an optimization problem. Let us make one step
forward and replace the feasibility program (4.1) by a more flexible opti-
mization program.

For this, let us make an additional (but quite mild) assumption that K
has non-empty interior and is star-shaped. Being star-shaped means that
together with each point, the set K contains the segment joining that point
to the origin; in other words,

tK C K foralltel0,1].

For such set K, let us revise the feasibility program (4.1). Instead of inter-
secting a fixed set K with the affine subspace {z’' : Az’ = y}, we may blow
up K (i.e. consider a dilate tK with increasing ¢ > 0) until it touches that
subspace. Choose Z to be the touching point, see Figure 6. The fact that
K is star-shaped implies that  still belongs to K and (obviously) the affine
subspace; thus Z satisfies the same error bound as in Theorem 4.1.
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K

Figure 6. Estimating « by blowing up K until it touches the
affine subspace {z' : Az’ =y}

To express this estimator analytically, it is convenient to use the notion
of Minkowski functional of K, which associates to each point x € R" a
non-negative number ||x||x defined by the rule

||| x =inf {A>0: Ml e K}.

A simple situation to think of is when K is an compact and origin-symmetric
convex set with non-empty interior; then ||| x is a norm on R™. The closed
unit ball corresponding to this norm is K.

Let us now accurately state an optimization version of Theorem 4.1. It is
valid for an arbitrary bounded star-shaped set K with non-empty interior.

Theorem 4.2 (Estimation from linear observations: optimization program).
Choose @ to be a solution of the program

minimize ||x'||x  subject to Az’ =y. (4.2)

Then Cwlk
Esup | - ol < Z25).
reK \/m
Proof. Tt suffices to check that £ € K; the conclusion would then follow
from Theorem 4.1. Both Z and « satisfy the linear constraint Az’ = y.

Therefore, by choice of , we have
1zl x < [lzllx <1;

the last inequality is nothing else than our assumption that @ € K. Thus
T € K as claimed. 0

4.3. Algorithmic aspects: convex programming. What does it take to
solve the optimization problem (4.2) algorithmically? If the feasible set K
is convex, then (4.2) is a convex program. In this case, to solve this problem
numerically, we may use one of the array of convex solvers. Further, if K is a
polytope, then (4.2) can be cast as a linear program, which widens an array
of algorithmic possibilities even further. For a quick preview, let us mention
that examples of the latter kind will be discussed in detail in Section 7,
where we will use K to enforce sparsity. We will thus choose K to be a
ball of ¢; norm in R", so the program (4.2) will minimize ||z’[|; subject to
Az’ = y. This is a typical linear program in the area of compressed sensing.

If K is not convex, then we can convexify it, thereby replacing K with
its convex hull conv(K). Convexification does not change the mean width,
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according to the remarkable property (3.4). Therefore, the generally non-
convex problem (4.2) can be relaxed to the convex program

minimize ||&'|[cony(x) subject to Az’ =y, (4.3)

without compromising the guarantee of estimation stated in Theorem 4.2.
The solution & of the convex program (4.3) still satisfies

E sup |3 — o, < 22U
zeK \/m
Summarizing, we see that in any case, whether K is convex or not, the
estimation problem reduces to solving an algorithmically tractable convex
program. Of course, for this one needs to be able to compute ||z||conv(k)
algorithmically for a given vector z € R™. This is possible for many (but
not all) feasible sets K.

4.4. Information-theoretic aspects: effective dimension. If we fix a
desired error level, for example if we aim for

E sup ||z — x|]2 < 0.01,
zeK

then

m ~ w(K)?
observations will suffice. The implicit constant factor here is determined by
the desired error level.

Notice that this result is uniform, in the sense that with high probability
in A (which determines the observation model) the estimation is accurate
simultaneously for all vectors « € K.

The square of the mean width, w(K)?, can be thought of an effective
dimension of the feasible set K, as we pointed out in Section 3.5.6.

We can summarize our findings as follows.

Using convex programming, one can estimate a vector x in
a general feasible set K from m random linear observations.
A sufficient number of observations m is the same as the
effective dimension of K (the mean width squared), up to a
constant factor.

5. HIGH DIMENSIONAL SECTIONS: PROOF OF A GENERAL M™* BOUND

Let us give a quick proof of the M* bound, Theorem 3.12. In fact, without
much extra work we will be able to derive a more general result from [55].
First, it would allow us to treat noisy observations of the form y = Ax + v.
Second, it will be generalizable for non-gaussian observations.

Theorem 5.1 (General M* bound). Let T' be a bounded subset of R"™. Let
A be an m x n Gaussian random matriz (with i.i.d. N(0,1) entries). Fix
e > 0 and consider the set

1
Tg:{ueT;;ﬂAthg} (5.1)
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27 T
E sup [[ull2 </ — Esup |(g,u) |+ \[6, (5.2)
u€eT; m  ueT 2

where g ~ N(0, I,) is a standard Gaussian random vector in R™.

Then

To see that this result contains the classical M* bound, Theorem 3.12,
we can apply it for T = K — K, e = 0, and identify ker(A) with E. In this
case,

T.=(K-K)NnE.

It follows that 7. O (KNE)—(KNE), so the left hand side in (5.2) is bounded
below by diam(K N E). The the right hand side in (5.2) by symmetry equals
/27 /mw(K). Thus, we recover Theorem 3.12 with C' = /2.

Our proof of Theorem 5.1 will be based on two basic tools in the theory
of stochastic processes — symmetrization and contraction.

A stochastic process is simply a collection of random variables (Z(t))er
on the same probability space. The index space T can be arbitrary; it may
be a time interval (such as in Brownian motion) or a subset of R" (as will
be our case). To avoid measurability issues, we can assume that 7 is finite
by discretizing it if necessary.

Proposition 5.2. Consider a finite collection of stochastic processes Z1(t), . . .

indexed by t € T'. Let €; be independent symmetric Bernoulli random vari-
ables, i.e. each €; independently takes values —1 and 1 with probabilities
1/2. Then we have the following.

(i) (Symmetrization)

Esup‘z (t)]‘ <2Esup‘§:<€iZi(t)‘.

teT

(ii) (Contraction)

ESMp‘ZgJZ ’) <ESUp‘Z€iZi(t)‘.
=1

teT

Both statements are relatively easy to prove, and even in greater gener-
ality. For example, taking the absolute values of Z;(t) in the contraction
principle can be replaced by applying general Lipschitz functions. Proofs of
symmetrization and contraction principles can be found in [40, Lemma 6.3]
and [40, Theorem 4.12], respectively.

5.1. Proof of Theorem 5.1. The desired bound (5.2) would follow from
the deviation inequality

2 2
E sup fZI ai, u —\E\\U\Iz‘ < s Bsup (g u) | (5.3)
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Indeed, if this inequality holds, then same is true is we replace T' by the
smaller set 7.. But for u € Tz, we have = > [(a;,u)| = 2| Aul; < ¢,

and the bound (5.2) follows by triangle inequality.
The rotation invariance of Gaussian distribution implies that

El{ai,u)| = \/EHU\Iz- (5.4)

Thus, using symmetrization and then contraction inequalities from Propo-
sition 5.2, we can bound the left side in (5.3) by

<;Zsiai,u>‘ . (5.5)

1
2FE sup |— Zsz- (a;,u) | =2Esup
weT ' ueT
Here ¢; are independent symmetric Bernoulli random variables.
Conditioning on ¢; and using rotation invariance, we see that the random
vector

1 m
::—E €iQ;
g i e S

has distribution N (0, I,). Thus (5.5) can be written as

2
ﬁESUP | <97U> |

ueT

This proves (5.3) and completes the proof of Theorem 5.1. O

6. CONSEQUENCES: ESTIMATION FROM NOISY LINEAR OBSERVATIONS

Let us apply the general M* bound, Theorem 5.1, to estimation problems.
This will be even more straightforward than our application of the standard
M* bound in Section 4. Moreover, we will now be able to treat noisy
observations.

Like before, our goal is to estimate an unknown vector & that lies in a
known feasible set K C R"”, from a random observation vector y € R™. This
time we assume that, for some known level of noise € > 0, we have

=Ax+v lHI/H —li]y-]<5 (6.1)
Y= ) m 1= m < i > ¢c- .
Here A is an m x n Gaussian matrix as before. The noise vector v may be
unknown and have arbitrary structure. In particular ¥ may depend on A,
so even adversarial errors are allowed.

The following result is a generalization of Theorem 4.1 for noisy observa-

tions (6.1).

Theorem 6.1 (Estimation from noisy linear observations: feasibility pro-
gram). Choose T to be any vector satisfying

. L~
xeK and —||Azx —y|i <e. (6.2)
m
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Then

. w(K)
Esup | — x| < V27 <+€>.
sp e el Vi

Proof. We apply the general M* bound, Theorem 5.1, for the set T'= K— K,
and with 2¢ instead of €. It follows that

2 K
E sup ||ull2 < U—W E sup |(g,u)|+ V2re < V27w (w() +5> .
u€The m uceTh, Vm

The last inequality should be clear once we replace To. by the larger set
T = K — K and use the symmetry of T'.
To finish the proof, it remains to check that

Z—x ¢ T (6.3)

To prove this, first note that ,x € K, so * —x € K — K = T. Next, by
triangle inequality, we have

1 ~ 1. 1, .~ 1
—[A@ - 2)h = Az —y + v < —[|AZ —y[ls + —[lv] < 2e
m m m m

The last inequality follows from (6.1) and (6.2). We showed that the vector
u = T — x satisfies both constraints that define T5. in (5.1). Hence (6.3)
holds, and the proof of the theorem is complete. O

And similarly to Theorem 4.2, we can cast estimation as an optimization
(rather than feasibility) program.

Theorem 6.2 (Estimation from noisy linear observations: optimization
program). Choose T to be a solution to the program

1
minimize ||x'||x  subject to —|| Az’ —y||; <e. (6.4)
m

Then

- w(K)
Esup ||z — x|2 < V27 <+5>.
sple el = e
Proof. Tt suffices to check that & € K; the conclusion would then follow
from Theorem 6.1. Note first that by choice of Z we have L[|AZ —y||; <e,
and by assumption (6.1) we have = ||Ax — y[|; = L||v||; <e. Thus both &
and x satisfy the constraint in (6.4). Therefore, by choice of Z, we have

12l < [lellx <1;

the last inequality is nothing else than our assumption that * € K. It
follows & € K as claimed. O

The remarks about algorithmic aspects of estimation made in Sections 4.3
and 4.4 apply also to the results of this section. In particular, the estimation
from noisy linear observations (6.1) can be formulated as a convez program.
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7. APPLICATIONS TO SPARSE RECOVERY AND REGRESSION

Remarkable examples of feasible sets K with low complexity come from
the notion of sparsity. Consider the set K of all unit s-sparse vectors in R".
As we mentioned in Example 3.9, the mean width of K is

w(K) ~ slog(n/s).

According to the interpretation we discussed in Section 4.4, this means that
the effective dimension of K is of order slog(n/s). Therefore,

m ~ slog(n/s)

observations should suffice to estimate any s-sparse vector in R™. Results
of this type form the core of compressed sensing, a young area of signal
processing, see [16, 36, 12, 32].

In this section we consider a more general model, where an unknown
vector & has a sparse representation in some dictionary.

We will specialize Theorem 6.2 to the sparse recovery problem. The
convex program will in this case amount to minimizing the ¢; norm of the
coefficients. We will note that the notion of sparsity can be relaxed to
accommodate approximate, or “effective”, sparsity. Finally, we will observe
that the estimate Z is most often unique and m-sparse.

7.1. Sparse recovery for general dictionaries. Let us fix a dictionary
of vectors dy,...,dy € R™. The dictionary may be arbitrary and even
redundant, i.e. not linearly independent. The choice of a dictionary depends
on the application; common examples include unions of orthogonal bases and
more generally tight frames (in particular, Gabor frames). See [15, 18, 11, 17]
for an introduction to sparse recovery problems with general dictionaries.

Suppose an unknown vector & € R" is s-sparse in the dictionary {d;}.
This means that « can be represented as a linear combination of at most s
dictionary elements, i. e.

N
T = Z o;d;  with at most s non-zero coefficients «; € R. (7.1)
i=1

As in Section 6, our goal is to recover x from a noisy observation vector
y € R™ of the form

y=Ax + v, —Hqu— Z]yl]<6

Recall that A is a known m x n Gaussian matrix, and and v is an unknown
noise vector, which can have arbitrary structure (in particular, correlated
with A).

Theorem 6.2 will quickly imply the following recovery result.
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Theorem 7.1 (Sparse recovery: general dictionaries). Assume for normal-
ization that all dictionary vectors satisfy ||d;]l2 < 1. Choose T to be a
solution to the convexr program

N
1
minimize ||@'||1 such that ' = E ald; satisfies —|| Az’ —y|l; <e. (7.2)
m
i=1
Then

- slog N
E|Z -], <C nf |z + V27 e

Proof. Consider the sets
K :=conv{+d;}Y,, K:=|a|; K.

Representation (7.1) implies that € K, so it makes sense to apply Theo-
rem 6.2 for K.

Let us first argue that the optimization program in Theorem 6.2 can be
written in the form (7.2). Observe that we can replace |||k by ||2'| 7
in the optimization problem (6.4) without changing its solution. (This is
because |||z = |la|li - ||&'||x and ||a|]; is a constant value.) Now, by
definition of K, we have

N
I/l = min { o/l - @' =" ald;}.
i=1

Therefore, the optimization programs (6.4) and (7.2) are indeed equivalent.
Next, to evaluate the error bound in Theorem 6.2, we need to bound the
mean width of K. The convexification property (3.4) and Example 3.8 yield

w(K) = [ledfly - w(K) < Cllex)1 - v/log N.

Putting this into the conclusion of Theorem 6.2, we obtain the error bound

~ log N
Esup |2 — x|z < V27 C 4/ i Nl + V27 e,

zeK

To complete the proof, it remains to note that

ledlly < Vs - [lex]l2, (7.3)

since « is s-sparse, i.e. it has only s non-zero coordinates. O

7.2. Remarkable properties of sparse recovery. Let us pause to look
more closely at the statement of Theorem 7.1.

7.2.1. General dictionaries. Theorem 7.1 is very flexible with respect to the
choice of a dictionary {d;}. Note that there are essentially no restrictions on
the dictionary. (The normalization assumption ||d;||2 < 1 can be dispensed
of at the cost of increasing the error bound by the factor of max; ||d;||2.) In
particular, the dictionary may be linearly dependent.
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7.2.2. Effective sparsity. The reader may have noticed that the proof of
Theorem 7.1 used sparsity in a quite mild way, only through inequality
(7.3). So the result is still true for vectors @ that are approximately sparse
in the dictionary. Namely, the Theorem 7.1 will hold if we replace the exact
notion of sparsity (the number of nonzero coefficients) by the the more
flexible notion of effective sparsity, defined as

effective sparsity(a) := (||a||1/||e||2)?.

It is now clear how to extend sparsity in a dictionary (7.1) to approximate
sparsity. We can say that a vector x is effectively s-sparse in a dictionary
{d;} if it can be represented as & = Y% | a;d; where the coefficient vector
a = (ai,...,ay) is effectively s-sparse.

The effective sparsity is clearly bounded by the exact sparsity, and it is
robust with respect to small perturbations.

7.2.3. Linear programming. The convex programs (7.2) and (7.5) can be
reformulated. This can be done by introducing new variables uq,...,uyN;
instead of minimizing ||@'||; in (7.2), we can equivalently minimize the linear
function Zf\i 1 u; subject to the additional linear constraints —u; < o < u;,
1 =1,...,N. In a similar fashion, one can replace the convex constraint
LAz’ — y|y < e in (7.2) by n linear constraints.

7.2.4. Estimating the coefficients of sparse representation. It is worthwhile
to notice that as a result of solving the convex recovery program (7.2), we
obtain not only an estimate Z of the vector x, but also an estimate & of the
coefficient vector in the representation @ = ) a;d;. However, only @ can be
estimated accurately; it should be clear that o can not be estimated by any
method if the dictionary {d;} is redundant (i.e. linearly dependent).

7.2.5. Sparsity of solution. The solution of the sparse recovery problem (7.2)
may bot be exact in general, i.e. when Z # x. This can be due to several
factors — the generality of the dictionary, approximate (rather than exact)
sparsity of « in the dictionary, or the noise v in the observations. But even in
this general situation, the solution @ is still m-sparse, in all but degenerate
cases.

Proposition 7.2 (Sparsity of solution). Assume that a given convex recov-
ery program (7.2) has a unique solution & for the coefficient vector. Then
a is m-sparse, and consequently T is m-sparse in the dictionary {d;}. This
is true even in presence of noise in observations, and even when no sparsity
assumptions on x are in place.

Proof. The result follows by simple dimension considerations. First note
that the constraint on @’ in the optimization problem (7.2) can be written
in the form

1
%HADO/ -yl <e, (7.4)
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where D is the n x N matrix whose columns are the dictionary vectors d;.
Since matrix AD has dimensions m x N, the constraint defines a cylinder
in RY whose infinite directions are formed by the kernel of AD, which has
dimension at least N —m. Moreover, this cylinder is a polytope (due to the
¢1 norm defining it), so it has no faces of dimension smaller than N — m.

On the other hand, the level sets of the objective function ||| are
also polytopes; they are dilates of the unit ¢; ball. The solution & of the
optimization problem (7.2) is thus a point in RY where the smallest dilate
of the /1 ball touches the cylinder. The uniqueness of solution means that
a touching point is unique. This is illustrated in Figure 7.

SO

A

Figure 7. Illustration for the proof of Proposition 7.2. The
polytope on the left represents a level set of the ¢1 ball. The
cylinder on the right represents the vectors «’ satisfying the
constraint (7.4). The two polytopes touch at point a.

Consider the faces of these two polytopes of smallest dimensions that con-
tain the touching point; we may call these the touching faces. The touching
face of the cylinder has dimension at least N — m, as all of its faces do.
Then the touching face of the £; ball must have dimension at most m, oth-
erwise the two touching faces would intersect by more than one point. This
translates into the m-sparsity of the solution &, as claimed. ([

7.2.6. Uniqueness of solution. In view of Proposition 7.2, we can ask when
the solution @ of the convex program (7.2) is unique. This does not always
happen; for example this fails if dy = ds.

We can get around this problem by making an arbitrarily small generic
perturbation of the dictionary elements, such as adding a small independent
Gaussian vector to each d;. Then one can see that the solution & (and
therefore & as well) are unique almost surely. Invoking Proposition 7.2 we
see that & is m-sparse in the perturbed dictionary.

Note that we do not need the dictionary d; to be linearly independent in
order for this to happen; the dictionary will always be dependent if N > n.

7.3. Sparse recovery for the canonical dictionary. Let us illustrate
Theorem 7.1 for the simplest example of a dictionary — the canonical basis
of R™:

{di}ie, = {ei}ioy-
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In this case, our assumption is that an unknown vector ® € R" is s-sparse
in the usual sense, meaning that & has at most s non-zero coordinates, or
effectively s-sparse as in Section 7.2.2. Theorem 7.1 then reads as follows.

Corollary 7.3 (Sparse recovery). Choose T to be a solution to the convex
program

1
minimize ||x'||1 subject to —||Ax’ — yl||; <e. (7.5)
m

~ slogn
E|Z -zl < Cy/ nf 2 + Vor e. O

Sparse recovery results like Corollary 7.3 form the core of the area of
compressed sensing, see [16, 36, 12, 32].

In the noiseless case (¢ = 0) and for sparse (rather then effectively sparse)
vectors, one may even hope to recover x exactly, meaning that £ = x with
high probability. Conditions for exact recovery are now well understood
in compressed sensing. We will discuss some exact recovery problems in
Section 9.

Then

We can summarize Theorem 7.1 and the discussion around it as follows.

Using linear programming, one can approximately recover a
vector x that is s-sparse (or effectively s-sparse) in a gen-
eral dictionary of size N, from m ~ slog N random linear
observations.

7.4. Application: linear regression with constraints. The noisy es-
timation problem (6.1) is equivalent to linear regression with constraints.
So in this section we will translate the story into the statistical language.
We present here just one class of examples out of a wide array of statistical
problems; we refer the reader to [66] for a recent review of high dimensional
estimation problems from a statistical viewpoint.

Linear regression is a linear model of relationship between one dependent
variable and n explanatory variables. The problem is to find the best linear
relationship from a sample of p observations of dependent and explanatory
variables. Linear regression is usually written as

y=XB+v.

Here X is an n X p matrix which contains a sample of n observations of p
explanatory variables; y € R"™ represents a sample of n observations of the
dependent variable; 3 € RP is a coeflicient vector; v € R"” is a noise vector.
We assume that X and y are known, while 8 and v are unknown. Our goal
is to estimate 3.

We discussed a classical formulation of linear regression. In addition, we
often know, believe, or want to enforce some properties about the coefficient
vector 3, (for example, sparsity). We can express such extra information as
the assumption that

BeK
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where K C RP is a known feasible set. Such problem may be called a linear
regression with constraints.

The high dimensional estimation results we have seen so far can be trans-
lated into the language of regression in a straightforward way. Let us do
this for Theorem 6.2; the interested reader can make a similar translation
or other results.

We assume that the explanatory variables are independent N(0,1), so
the matrix X has all i.i.d. N(0,1) entries. This requirement may be too
strong in practice; however see Section 8 on relaxing this assumption. The
noise vector v is allowed have arbitrary structure (in particular, it can be
correlated with X'). We assume that its magnitude is controlled:

1|| | 1§n| | <
— Vi1 = — V; IS
n 1 ni:l R

for some known noise level .

Theorem 7.4 (Linear regression with constraints). Choose B to be a solu-
tion to the program

1
minimize |3k subject to —|| X8 —y|1 <e.
n

Then

EglelgHB—BHQS\/%CU\(f?Jrs). O

8. EXTENSIONS FROM (GAUSSIAN TO SUB-GAUSSIAN DISTRIBUTIONS

So far, all our results were stated for Gaussian distributions. Let us show
how to relax this assumption. In this section, we will modify the proof
of the M* bound, Theorem 5.1 for general sub-gaussian distributions, and
indicate the consequences for the estimation problem. A result of this type
was proved in [49] with a much more complex argument.

8.1. Sub-gaussian random variables and random vectors. A system-
atic introduction into sub-gaussian distributions can be found in Sections
5.2.3 and 5.2.5 of [65]; here we briefly mention the basic definitions. Ac-
cording to one of the several equivalent definitions, a random variable X is
sub-gaussian if
Eexp(X?/¢y?) <e.

for some @ > 0. The smallest ¢ is called the sub-gaussian norm and is
denoted || X ||y,

The notion of sub-gaussian distribution transfers to higher dimensions
as follows. A random vector X € R" is called sub-gaussian if all one-
dimensional marginals (X, u), u € R", are sub-gaussian random variables.
The sub-gaussian norm of X is defined as

[ X[l := sup [[(X, ) [y, (8.1)

uesSn—1
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where, as before, S"~! denotes the Euclidean sphere in R”. Recall also that
the random vector X is called isotropic if

EXX' =1,

Isotropy is a scaling condition; any distribution in R™ which is not supported
in a low-dimensional subspace can be made isotropic by an appropriate linear
transformation.

8.2. M* bound for sub-gaussian distributions. Now we state and prove
a version of M* bound, Theorem 5.1, for general sub-gaussian distributions.
It is a variant of a result from [49].

Theorem 8.1 (General M* bound for sub-gaussian distributions). Let T'
be a bounded subset of R™. Let A be an m X n matriz whose rows a; are
i.4.d., mean zero, isotropic and sub-gaussian random vectors in R™. Choose
1 > 1 so that

lailys <9, i=1,....m. (8.2)
Fiz e > 0 and consider the set

L= {ueT: |dul, <<},
m
Then 1
E sup |[ul> < Ov! (= B sup | (g,u)] + <),

ucT: ueT:
where g ~ N(0,1,) is a standard Gaussian random vector in R™.

A proof of this result is an extension of the proof of the Gaussian M*
bound, Theorem 5.1. Most of that argument generalizes to sub-gaussian
distributions in a standard way. The only non-trivial new step will be based
on the deep comparison theorem for sub-gaussian processes due to X. Fer-
nique and M. Talagrand, see [64, Section 2.1]. Informally, the result states
that any sub-gaussian process is dominated by a Gaussian process with the
same (or larger) increments.

Theorem 8.2 (Fernique-Talagrand’s comparison theorem). Let T be an
arbitrary set.?> Consider a Gaussian random process (G(t))ter and a sub-
gaussian random process (H(t))ier. Assume that EG(t) = EH(t) = 0 for
all t € T. Assume also that for some M > 0, the following increment
comparison holds:

1H (s) = H(#)llg, < M (E|G(s) = G@)|3)"*  for all s,t € T.

Then

Esup H(t) < CM Esup G(t).
teT teT

2We can assume T to be finite to avoid measurability complications, and then proceed
by approximation; see e.g. [40].

3The increment comparison may look better if we replace the Ly norm in the right hand
side by 12 norm. Indeed, it is easy to see that [|G(s) — G(t)|y, =< (E||G(s) — G(¢)||3)*/2.
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This theorem is a combination of a result of X. Fernique [31] that bounds
E sup;cq H(t) above by the so-called magjorizing measure of T', and a result of
M. Talagrand [63] that bounds E sup;cp G(t) below by the same majorizing
measure of 7.

Proof of Theorem 8.1. Let us examine the proof of the Gaussian M* bound,
Theorem 5.1, check where we used Gaussian assumptions, and try to accom-
modate sub-gaussian assumptions instead.

The first such place is identity (5.4). We claim that a version of it still
holds for the sub-gaussian random vector a, namely

lull2 < Cov® Eq | (a, u)| (8.3)

where Cj is an absolute constant.*

To check (8.3), we can assume that ||ull = 1 by dividing both sides by
||u||2 if necessary. Then Z := (a,u) is sub-gaussian random variable, since
according to (8.1) and (8.2), we have [|Z]|y, < ||@||y, < %. Then, since sub-
gaussian distributions have moments of all orders (see [65, Lemma 5.5]), we
have (E Z%)1/3 < C1||Z||y, < C14), where Cy is an absolute constant. Using
this together with isotropy and Cauchy-Schwarz inequality, we obtain

1=E2Z2 =R 22732 < (EZ2)"2(E Z%)'/? < (E 2)'?(Cy¢)>>.

Squaring both sides implies (8.3), since we assumed that ||ul/e = 1.

The next steps in the proof of Theorem 5.1 — symmetrization and contrac-
tion — go through for sub-gaussian distributions without change. So (5.5) is
still valid in our case.

Next, the random vector

1 m
h = ﬁ Zz:;&'iai

is no longer Gaussian as in the proof of Theorem 5.1. Still, h is sub-gaussian
with
By, < Cat (8.4)

due to the approximate rotation invariance of sub-gaussian distributions,
see [65, Lemma 5.9].

In the last step of the argument, we need to replace the sub-gaussian
random vector h by the Gaussian random vector g ~ N(0, I,,), i.e. prove
an inequality of the form

E sup [ (h,u)| S E sup | {(g,u)|.
uETe ’ILGTE

4We should mention that a reverse inequality also holds: by isotropy, one has
Eo|(a,u)| < (Eq (@, u)?)"/? = ||ull2. However, this inequality will not be used in the
proof.
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This can be done by applying the comparison inequality of Theorem 8.2 for
the processes

H(u)=(h,u) and G(u)=(g,u), uweTU(-T).
To check the increment inequality, we can use (8.4), which yields

[1H (u) = H(v)|ly, = || (h,u = v) [ly, < [|Ally, [[u—vll2 < Cot) lu —vlf2.
On the other hand,
(E(G(u) - G@)[3)"2 = lu - v]l.

Therefore, the increment inequality in Theorem 8.2 holds with M = Ca.
It follows that

E  sup <h’ u> < C3¢ E  sup <ga ’U,> :
ueTU(-T) ueTU(-T)

This means that

Esup | (h,u) | < C3¢) Esup|(g,u) |
ucT ueT

as claimed.
Replacing all Gaussian inequalities by their sub-gaussian counterparts
discussed above, we complete the proof just like in Theorem 5.1. [l

Remark 8.3 (Dependence on sub-gaussian norm). The dependence on v in
Theorem 8.1 is not optimal. To make the argument transparent, we have
not tried to optimize this dependence; the interested reader is encouraged
to do so.

8.3. Estimation from sub-gaussian linear observations. It is now straight-
forward to generalize all recovery results we developed before from Gaussian
to sub-gaussian observations. So our observations are now

yi = (aj,z) +v;, i=1,...,m

where a; are i.i.d., mean zero, isotropic and sub-gaussian random vectors
in R". As in Theorem 8.1, we control the sub-gaussian norm with the
parameter 1 > 1, choosing it so that

lailly, <, i=1,....m.
We can write observations in the matrix form as in (6.1), i.e.
y=Ax + v,

where A is the m x n matrix with rows a;. As before, we assume some
control on the error:

Ll = LS <
—|v|1=— vi| <e.
m 1 mi_l 7|

Let us state a version of Theorem 6.1 for sub-gaussian observations. Its
proof is the same, except we use the sub-gaussian M* bound, Theorem 8.1
where previously a Gaussian M™* bound was used.
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Theorem 8.4 (Estimation from sub-gaussian observations). Choose T to
be any vector satisfying

~ IR
reK and —|Ax —y|1<e.
m

Then

. w(K)
E sup || — x| < Cy* < +5> . O
xreK Vm
In a similar fashion, one can generalize all other estimation results estab-
lished before to sub-gaussian observations. We leave this to the interested
reader.

9. EXACT RECOVERY

In some situations, one can hope to estimate vector & € K from y exactly,
without any error. Such results form the core of the area of compressed
sensing. [16, 36, 32]. Here we will present an approach to exact recovery
based on Y. Gordon’s “escape through a mesh” theorem [28]. This argument
goes back to [60] for the set of sparse vectors; it was put in a general context
in [13].

We will work here with Gaussian observations

y = Az,

where A is an m x n Gaussian random matrix. This is the same model as
we considered in Section 4.

9.1. Exact recovery condition and the descent cone. When can x be
inferred from y exactly? Recall that we only know two things about x —
that it lies in the feasible set K and in the affine subspace

Ey = {x : Az’ = y}.

This two pieces of information determine @ uniquely if and only if these two
sets intersect at the single point «:

KN E, = {z}. (9.1)

Notice that this situation would go far beyond the M* bound on the diameter
of KNE (see Theorem 3.12) — indeed, in this case the diameter would equal
zero!

How can this be possible? Geometrically, the exact recovery condition
(9.1) states that the affine subspace E4 is tangent to the set K at the point
x; see Figure 8a for illustration.

This this condition is local. Assuming that K is convex for better un-
derstanding, we see that the tangency condition depends on the shape of
K in an infinitesimal neighborhood of @, while the global geometry of K is
irrelevant. So we would not lose anything if we replace K by the descent
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E, ker(A)

gn— 1

S(K, z)
(a) Exact recovery condition (b) Picture translated by —:
(9.1): affine subspace E, is tan- subspace ker(A) is tangent to de-
gent to K at x scent cone D(K,x) at 0

Figure 8. Illustration of the exact recovery condition (9.1)

cone at point x, see Figure 8b. This set is formed by the rays emanating
from « into directions of points from K:

D(K,z):={t(z—x): z€ K, t > 0}.
Translating by —, can we rewrite the exact recovery condition (9.1) as
(K —x) N (Ey —x) = {0}

Reeplacing K —x by the descent cone (a bigger set) and noting that E,—x =
ker(A), we rewrite this again as

D(K, z) Nker(A) = {0}.

The descent cone can be determined by its intersection with the unit sphere,

i.e. by
z—x

S(K,z) = D(K,z)nS"! = { L ze K} (9.2)

Iz — |2
Thus we arrive at the following equivalent form of the exact recovery con-
dition (9.1):

S(K,z) Nker(A) = @;
see Figure 8b for an illustration.

9.2. Escape through a mesh, and impications for exact recovery.
It remains to understand under what conditions the random subspace ker A
misses a given subset S = S(K, x) of the unit sphere. There is a remarkably
sharp result in asymptotic convex geometry that answers this question for
general subsets S. This is the theorem on escape through a mesh, which is
due to Y. Gordon [28]. Similarly to the other results we saw before, this
theorem depends on the mean width of S, defined as®

w(S) = Esgg (g,u), where g~ N(0,1I,).

5The only (minor) difference with our former definition (3.2) of the mean width is that
we take supremum over S instead of S — S, so w(S) is a smaller quantity. The reason we
do not need to consider S — S because we already subtracted x in the definition of the
descent cone.
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Theorem 9.1 (Escape through a mesh). Let S be a fived subset of S™~1.
Let E be a random subspace of R™ of a fized codimension m, drawn from
the Grassmanian Gy, p—p, according to the Haar measure. Assume that

w(S) < /m.
Then
SNE =9
with high probability, namely 1 — 2.5exp [ — (m/v/m + 1 — w(S))?/18].

Applying this result for S = S(K,z) and E = ker(A4), we conclude by
the argument above that the exact recovery condition (9.1) holds with high
probability if

m > w(S)%.

How can we algorithmically recover « in these circumstances? We can
do the same as in Section 4.1, either using the feasibility program (4.1)
or, better yet, the optimization program (4.2). The only difference is that
the diameter of the intersection is now zero, so the recovery is exact. The
following is an exact version of Theorem 4.2.

Theorem 9.2 (Exact recovery from linear observations). Choose T to be a
solution of the program
minimize ||x'||x  subject to Az’ =y.
Assume that the number of observations satisfies
m > w(S)? (9.3)

where S = S(K, x) is the spherical part of the descent cone of K, defined in
(9.2). Then

T==x
with high probability (the same as in Theorem 9.1). O

Note the familiar condition (9.3) on m which we have seen before, see e.g.
Section 4.3. Informally, it states the following;:

Ezact recovery is possible when the number of measurements
exceeds the effective dimension of the descent cone.

Remarkably, the condition (9.3) does not have absolute constant factors
which we had in results before.

9.3. Application: exact sparse recovery. Let us illustrate how Theo-
rem 9.2 works for exact sparse recovery. Assume that x is s-sparse, i.e.
it has at most s non-zero coefficients. For the feasible set, we can choose
K = ||z|1B} = {«’ : ||&'|1 < ||z|1}. One can write down accurately an
expression for the descent cone, and derive a familiar bound on the mean

width of S = S(K, z):
w(S) < Cy/slogn;
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see [60] for details. We plug this into Theorem 9.2, where we replace ||&'|| x
in the optimization problem by the proportional quantity ||«’(|;. This leads
to the following exact version of Corollary 7.3:

Theorem 9.3 (Exact sparse recovery). Assume that an unknown vector
x € R™ is s-sparse. Choose T to be a solution to the convexr program
minimize ||x'||1  subject to Az’ =y.
Assume that the number of observations satisfies m > Cslogn. Then
r==x

with high probability, namely 1 — 2.5e™™. O
Due to the remarkable sharpness of Gordon’s theorem, one may hope to

obtain sharp conditions on the number of observations m (without absolute

constants). This was done in [19] for the sparse recovery problem, and more

recently in [3] for general feasible cones. The latter paper proves a variant of

Gordon’s theorem with a slightly different (but still closely related) version
of mean width.

10. LOW-RANK MATRIX RECOVERY AND MATRIX COMPLETION

10.1. Background: matrix norms. The theory we developed so far con-
cerns estimation of vectorsin R™. It should not be surprising that this theory
can also be applied for matrices. Matrix estimation problems were studied
recently in particular in [8, 9, 34, 10, 59].

Let us recall some basic facts about matrices and their norms. We can
identify di x do matrices with vectors in R%*d2  The f5 norm in R%*4 jg
then nothing else than Frobenius (or Hilbert-Schmidt) norm of matrices:

di d2

IXle= (03 x)"

i=1 j=1
The inner product in R%*% can be written in matrix form as follows:
(X,Y) =tr(XTY).
Denote d = min(dy,ds). Let
51(X) > s9(X) > -+ > 59(X) >0
denote the singular values of X. Then Frobenius norm has the following
spectral representation:
d
Xl = (3 si02) "

i=1

Recall also the operator norm of X, which is

[ X2
x| = = max_s;(X).
ueRM\{0} |lullz  i=1,..d
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Finally, the nuclear norm of X is defined as

d
X[ =) si(X).
i=1
Spectrally, i.e. on the level of singular values, the nuclear norm is a
version of /1 norm for matrices, the Frobenius norm is a version of /o norm
for matrices, and the operator norm is a version of /,, norm for matrices.
In particular, the following inequality holds:

X1 < 1 X7 < [ X+

The reader should be able to derive many other useful inequalities in a
similar way, for example

X[ < vrank(X) - | X[|F, [ X][F < rank(X) - [ X]| (10.1)

and
(X, ) < 1 XTI 1Y [ (10.2)

10.2. Low-rank matrix recovery. We are ready to formulate a matrix
version of the sparse recovery problem from Section 7. Our goal is to esti-
mate an unknown dy X ds matrix X from m linear observations given by

yZ: <AZ7X>7 7': 17"'7m' (10.3)

Here A; are independent d; x do Gaussian matrices with all i.i.d. N(0,1)
entries.

There are two natural matrix versions of sparsity. The first version is the
sparsity of entries. We will be concerned with the other, spectral, type of
sparsity, where there are only a few non-zero singular values. This simply
means that the matrix has low rank. So let us assume that the unknown
matrix X satisfies

rank(X) <r (10.4)

for some fixed (and possibly unknown) r < n.
The following is a matrix version of Corollary 7.3; for simplicity we are
stating it in a noise-free setting (¢ = 0).

Theorem 10.1 (Low-rank matrix recovery). Choose X to be a solution to
the convex program

minimize || X'||. subject to (A;, X') =vy;, i=1,...,m. (10.5)
Then

’l“(dl =+ dg)
) s

Esup || X — X||p < 4V/7
X

Here the supremum is taken over all di X do matrices X or rank at most r.



35

The proof of Theorem 10.1 will closely follow its vector prototype, that
of Theorem 7.1; we will just need to replace the ¢; norm by the nuclear
norm. The only real difference will be in the computation of the mean width
of the unit ball of the nuclear norm. This computation will be based on
Y. Gordon’s bound on the operator norm of Gaussian random matrices, see
Theorem 5.32 in [65].

Theorem 10.2 (Gordon’s bound for Gaussian random matrices). Let G be
an dy X do matriz whose entries are i.i.d. mean zero random variables. Then

E|G| < Vi + Vds.

Proposition 10.3 (Mean width of the unit ball of nuclear norm). Consider
the unit ball in the space of di X do matrices corresponding to the nuclear
norm:

B:={X e R"*% . || X|, <1}.

w(B) < 2(Vdi + \/da).

Proof. By definition and symmetry of B, we have

w(B)=E sup (G,X)=2Esup (G,X),
XeB-B XeB

Then

where G is a d; x dy Gaussian random matrix with N(0,1) entries. Using
inequality (10.2) and definition of B, we obtain we obtain

w(B) < 2E sup |G| - [| Xl <2E[|G].
XeB
To complete the proof, it remains to apply Theorem 10.2. U

Let us mention an immediate consequence of Proposition 10.3, although
it will not be used in the proof of Theorem 10.1.

Proposition 10.4 (Mean width of the set of low-rank matrices). Let
D={X e R"*%: | X| =1, rank(X) < r}.

’U)(D) < C\/T(dl + dg).

Proof of Proposition 10.4. The bound follows immediately from Proposi-
tion 10.3 and the first inequality in (10.1), which implies that D C /r-B. O

Then

Proof of Theorem 10.1. The argument is a matrix version of the proof of
Theorem 7.1. We consider the following subsets of dy x de matrices:

K:={X":||X'|. <1}, K:=|X|. K.
Then obviously X € K, so it makes sense to apply Theorem 6.2 (with € = 0)

for K. It should also be clear that the optimization program in Theorem 6.2
can be written in the form (10.5).
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Applying Theorem 6.2, we obtain
w(K)
N
Recalling the definition of K and using Proposition 10.3 to bound its mean
width, we have

w(K) = w(K) - | X[« <2v2V/di + dy - || X5

It follows that

Esup ||X — X||p < v2r -
X

dy + do

m

Esup | X - X < 4y X
It remains to use the low-rank assumption (10.4). According to the first
inequality in (10.1), we have

X < V7l X]lp-
This completes the proof of Theorem 10.1. O

10.3. Low-rank matrix recovery: some extensions.

10.3.1. From exact to effective low rank. The exact low rank assumption
(10.4) can be replaced by approximate low rank assumption. This is a
matrix version of a similar observation about sparsity which we made in
Section 7.2.2. Indeed, our argument shows that Theorem 10.1 will hold if
we replace the rank by the more flexible effective rank, defined for a matrix
X as
r(X) = (1X[1/1X 1)

The effective rank is clearly bounded by the algebraic rank, and it is robust
with respect to small perturbations.

10.3.2. Noisy and sub-gaussian observations. Our argument makes it easy
to allow noise in the observations (10.3), i.e. consider observations of the
form y; = (A4;, X) + v;. We leave details to the interested reader.

Further, just like in Section 8, we can relax the requirement that A; be
Gaussian random matrices, replacing it with a sub-gaussian assumption.
Namely, it is enough to assume that the columns of A; are i.i.d., mean zero,
isotropic and sub-gaussian random vectors in R%, with a common bound
on the sub-gaussian norm. We again leave details to the interested reader.

We can summarize the results about low-rank matrix recovery as follows.

Using convexr programming, one can approzimately recover
a di x dg matriz which has rank (or effective rank) r, from
m ~ r(dy + da) random linear observations.

To understand this number of observations better, note that it is of the
same order as the number of degrees of freedom in the set of d; x do matrices
or rank r.
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10.4. Matrix completion. Let us now consider a different, and perhaps
more natural, model of observations of matrices. Assume that we are given
a small random sample of entries of an unknown matrix matrix X. Our
goal is to estimate X from this sample. As before, we assume that X has
low rank. This is called a matrixz completion problem, and it was extensively
studied recently [8, 9, 34, 59].

We can not apply the previously developed theory for such observations.
While sampling of entries is a linear operation, such observations are not
Gaussian or sub-gaussian (more accurately, we should say that the sub-
gaussian norm of such observations is too large).

Nevertheless, it is possible able to derive a matrix completion result in
this setting. Our exposition will be based on a direct argument and simple
from [57].

Let us formalize the process of sampling the entries of X. First, we fix
the average size m of the sample. Then we generate selectors d;; € {0,1}
for each entry of X. Those are i.i.d. random variables with

m
Edyj = — =
ij dldg p
Our observations are given as the d; X do matrix Y whose entries are
Yij = 0ij Xij.

Therefore, the observations are randomly and independently sampled entries
of X along with the indices of these entries; the average sample size is fixed
and equals m. We will require that

m > d1 log dl, m > dg log d2. (106)

These restrictions ensure that, with high probability, the sample contains
at least one entry from each row and each column of X (recall the classical
coupon collector’s problem).

As before, we assume that

rank(X) <r.

The next result that X can be estimated from Y using low-rank approxi-
mation.

Theorem 10.5 (Matrix completion). Choose X to be best rank-r approxi-
mation’® of p~1Y. Then

1
Vdids

E IX - X|lr<C

d d
)y, (10.7)
m

where || X||oc = max;

6Formally, consider the singular value decomposition p~'Y = > siu;v;] with non-
increasing singular values s;. We define X by retaining the r leading terms of this decom-
position, i.e. X =37, s;uv, .



38 ROMAN VERSHYNIN

To understand the form of this estimate, note that the left side of (10.7)
measures the average error per entry of X:

dy  d2

— 1% - X = (ddZZer x)"

So, Theorem 10.5 allows to make the average error per entry arbitrarily
smaller than the maximal entry of the matrix. Such estimation succeeds
with a sample of m ~ r(d; + dz) entries of X.

The proof of Theorem 10.5 will be based on a known bound on the op-
erator norm of random matrices, which is more general than Y. Gordon’s
Theorem 10.2. There are several ways to obtain general bounds; see [65]
for a systematic treatment of this topic. We will use one such result due to
Y. Seginer [61].

Theorem 10.6 (Seginer’s bound for general random matrices). Let G be an
d1 X do matriz whose entries are i.1.d. mean zero random variables. Then

E|G] < C(Emax |Gill + Emax [[G7]|2)
i J

where the mazima are taken over all rows G; and over all columns G7 of G,
respectively.

Proof of Theorem 10.5. We shall first control the error in the operator norm.
By triangle inequality,

IX = X[| <X =p Y|+ [lp~'Y = X]|. (10.8)
Since X is the best rank-r approximation to p~'Y’, and both X and X are

rank-r matrices, the first term in (10.8) is bounded by the second term.
Thus

IX = X|| <2p~'Y — X|| = ;IIY—pXII- (10.9)
The matrix Y — pX has independent mean zero entries, namely
(Y —pX)ij = (6i5 — p) Xij-
So we can apply Y. Seginer’s Theorem 10.6, which yields

E[lY —pX|| < O(Bmax (¥~ pX)ill2 + Emax (¥ —pX)]l2). (10.10)

It remains to bound the ¢ norms of rows and columns of Y — PX. Let
us do this for rows; a similar argument would control the columns. Since

d2

1Y = pX)ill3 =D (65 — )1 X" < Z i =) X oo,

J=1
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this quantity can be bounded using concentration inequalities for sums of in-
dependent random variables. In particular, we can use Bernstein’s inequality
(see [6]), which yields

d2

P Z((S’ — )2 > pdat p < exp(—cpdat), t>2.

j=1
The first restriction in (10.6) guarantees that pdy > log d;. This enables us
to use the union bound over ¢ < d;, which yields

d2
Er@f [Z((Sij - p)g} v < Cipds.

This translates into the following bound for the rows of ¥ — PX:
Emax (¥ — pX)ills < C1v/pdz [ X |

Repeating this argument for columns and putting the two bounds into
(10.10), we obtain

1Y = pX|| < C2/pld1 + d2) || X ||oo-

Substituting into (10.9), we conclude that

|X - X <Cs 1X oo (10.11)

It remains to pass to the Frobeinus norm. This is where we use the low
rank assumption on X. Since both X and X have ranks bounded by r, we
have rank(X — X) < 2r. Then, according to the second inequality in (10.1),

IX - X|lr < V2r | X - X]|.

Combining this with (10.11) and recalling that p = m/(d1dz2) by definition,
we arrive at the desired bound (10.7). O

Remark 10.7 (Noisy observations). One can easily extend Theorem 10.5 for
noisy sampling, where every observed entry of X is independently corrupted
by a mean-zero noise. Formally, we assume that the entries of the observa-
tion matrix Y are
Yij = 0ij(Xij + vij)

where v;; are independent and mean zero random variables. Let us further
assume that |v;;| < M almost surely. Then a slight modification of the proof
of Theorem 10.5 yields the following error bound:

1 T(dl + dg)
vV d1d2 m

We leave details to the interested reader.

E

IX - X|r<C (X loo + ).
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11. SINGLE-BIT OBSERVATIONS VIA HYPERPLANE TESSELLATIONS

It may perhaps be surprising that a theory of similar strength can be
developed for estimation problems with non-linear observations, in which
the observation vector y € R depends non-linearly on the unknown vector
x € R™

In this and next sections we explore an example of extreme non-linearity
— the one given by the sign function. in Section 13, we will extend the theory
to completely general non-linearities.

11.1. Single-bit observations. As before, our goal is to estimate an un-
known vector @ that lies in a known feasible set K C R", from a random
observation vector y = (y1,...,ym) € R"™. This time, we will work with
single-bit observations y; € {—1,1}. So, we assume that

y; = sign{a;,x), i=1,...,m, (11.1)

where a; are standard Gaussian random vectors, i.e. a; ~ N(0, I,,). We can
represent the model in a matrix form:

Y= sign(Aa:),

where A is an m x n Gaussian random matrix with rows a;, and where
our convention is that the sign function is applied to each coordinate of the
vector Ax.

The single-bit model represents an extreme quantization of the linear
model we explored before, where y = Ax. Only one bit is retained from
each linear observation y;. Yet we hope to estimate x as accurately as if all
bits were available.

The model of single-bit observations was first studied in this context in
[7]. Our discussion will follow [55].

11.2. Hyperplane tessellations. Let us try to understand single-bit ob-
servations y; from a geometric perspective. Each y; € {—1,1} represents
the orientation of the vector & with respect to the hyperplane with normal
a;. There are m such hyperplanes. The observation vector y = (y1,...,Ym)
represents orientation of & with respect to all these hyperplanes.

Geometrically, the m hyperplanes induce a tessellation of R™ by cells.
A cell is a set of points that have the same orientation with respect to all
hyperplanes; see Figure 9. Knowing y is the same as knowing the cell where
x lies.

How can we estimate x? Recall that we know two pieces of information
about x:

1. x lies in a known cell of the hyperplane tessellation;
2. zx lies in a known set K.

Therefore, a good estimator of & can be obtained by picking any vector
Z from the intersection of these two sets. Moreover, since just these two
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Figure 9. A tessellation of the feasible set K by hyperplanes.
The cell containing « is highlighted.

pieces of information about @ are available, such estimator is best possible
in some sense.

11.3. M* bound for random tessellations. How good is such estimate?
The maximal error is of course the diameter of the intersection of the cell
with K. So in order to bound the error, we need to prove that this diameter
is small.

Note that our strategy is parallel to what we have done for linear obser-
vations in Section 4.1. The only piece we are missing is a version of M*
bound for random tessellations instead of random subspaces. Informally, we
need a result about the following question:

Question 11.1 (Pizza cutting). How many random hyperplanes would cut
a given set K into pieces that are at most € in size?

A result about this problem was proved in [55].

Theorem 11.2 (M* bound for random tessellations). Consider a set K C
Sl and m independent random hyperplanes drawn uniformly from the
Grassmanian Gy n—1. Then

Cw(K)}lﬂ
\/m

where the maximum is taken over all cells C of the hyperplane tessellation.

Emcaxdiam(KﬂC) < [

Y

Apart from the exponent 1/2 which is unlikely to be optimal, this result
is indeed a version of the M* bound, Theorem 3.12. To further highlight
the similarity, note that when m < n, the intersection of the m random
hyperplanes is a random linear subspace E of codimension m. This sub-
space lies in each cell of the tessellation. So in particular, Theorem 11.2
controls the quantity E diam(K N E) appearing in the standard M* bound,
Theorem 3.12.

11.4. Estimation based on M* bound for random tessellations. Now
we can apply Theorem 11.2 for the estimation problem. Based on our dis-
cussion in Section 11.2, this result immediately implies the following.
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Theorem 11.3 (Estimation from single-bit observations: feasibility pro-
gram). Assume the unknown vector x lies in some known set K C S"~1,
and the single-bit observation vector y is given by (11.1). Choose T to be
any vector satisfying

rxeK and sign(Az) =y. (11.2)
Then
. Cw(K)71/3
Esup |z —x|2 < | —= .
s el < [ =]

We assumed in this result that feasible set K lies on the unit sphere. This
is because the magnitude ||x||2 is obviously lost in the single-bit observations.
So we can only hope to estimate the direction of @, which is the vector
x/||x||2 on the unit sphere.

A good news is that estimation can be made from m ~ w(K)? single-bit
observations, the same as for linear observations. So, perhaps surprisingly,
the essential information about @ is contained in a single bit of each obser-
vation.

A bad news is that the feasibility program (11.2) is not conver. When K
is restricted to lie on the sphere, it can never be convex or be convexified.
One can get around this issue, for example, by lifting the restriction; see
[55] for pizza-cutting of general sets in R".

But a better idea will be to replace the feasibility problem (11.2) by an
optimization problem — just like we did in Section 4.2 — which will work for
general sets K in the unit ball B rather than the unit sphere. Such sets
can be convexified. We will do this in the next section.

12. SINGLE-BIT OBSERVATIONS VIA OPTIMIZATION, AND APPLICATIONS
TO LOGISTIC REGRESSION

Our goal remains the same as we described in Section 11.1. We would
like to estimate a vector x that lies in a known feasible set K C R", from
single-bit observations given as

y =sign(Ax) € {—1,1}"™.

Instead of formulating estimation as a feasibility problem (11.2), we will
now state it as an optimization problem, as follows:

maximize (Axz’,y) subject to ' € K. (12.1)

This program tries to fit linear observations Az’ to the single-bit obser-
vations y. It does so by maximizing the correlation between linear and
single-bit observations while searching inside the feasible set K.

If K is a convex set, (12.1) is a convex program. Otherwise one can
convexify K as we did several times before.

The following result from [56] provides a guarantee for such estimator.
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Theorem 12.1 (Estimation from single-bit observations: optimization pro-
gram). Assume the unknown vector x € R™ satisfies ||x||2 = 1 and x lies in
some known set K C BY. Choose T to be a solution to the program (12.1).
Then

Cw(K)

E |2 - alff <~

Here C = /87 =~ 5.01.

Our proof of Theorem 12.1 will be based on properties of the loss function,
which we define as

Lz(w,) = m <A.’E y _72% a;, T

The index x indicates that the loss function depends on x through y. The
negative sign is chosen so that program (12.1) minimizes the loss function
over K.

We will now compute the expected value and the deviation of the loss
function for fixed  and x’.

Lemma 12.2 (Expectation of loss function). Let £ € S"~1 and ' € R".
Then

Proof. We have
ELg(x') = —Ey (a1,2') = —Esign((a1,z)) (a1, ) .

It remains to note that (aj,x) and (ai,2’) is a pair of normal random
variables with zero mean, variances ||z|3 = 1 and ||z’||3 respectively, and
covariance (x,x’). A simple calculation renders the expectation above as
— (x, x')-Esign(g)g where g ~ N(0,1). It remains to recall that Esign(g)g =

Elg| = +\/2/m. O
Lemma 12.3 (Uniform deviation of loss function). We have

2w(K)

E sup |Lg(u) —ELg(u)| <
ucK—-K

(12.2)

:

Proof. Due to the form of loss function, we can apply the symmetrization
inequality of Proposition 5.2, which bounds the left side of (12.2) by

sup )Zs,yz a;,u ‘ = sup ’<Z €Y, U >‘ (12.3)

uEK K uEK K

By symmetry and since y; € {—1,1}, the random vectors {g;y;a;} are
distributed identically with {a;}. In other words, we can remove &;y; from
(12.3) without changing the value of the expectation.
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Next, by rotation invariance, > " | a; is distributed identically with v/m g,
where g ~ N(0, I,,). Therefore, the quantity in (12.3) equals

2 2w(K)
—FE sup ,u) | = .
TE sw (g =2
This completes the proof. ([

Proof of Theorem 12.1. Fix ' € K. Let us try to bound || — /(|2 in terms
of Lgy(x) — Lo(2'). By linearity of the loss function, we have

Ly(x) — Lgp(x') = Ly(x — ') = E Ly(x — ') + Dy (12.4)
where the deviation

Dy := sup |Lw(u) *ELw(u”
ucK-K

will be controlled using Lemma 12.3 a bit later.

To compute the expected value in (12.4), we can use Lemma 12.2 along
with the conditions |z||2 = 1, ||&’||2 < 1 (the latter holds since &’ € K C
By). This way we obtain

2 1 /2
ELg(x—2') = —\/; (x,x —a') < —2\/;Hm —a'||3.

Putting this into (12.4), we conclude that

Lo(@) — Lo(a') < —127T\|:c—a:'|]%+Dm. (12.5)
This bound holds for any fixed ' € K and for any point in the probability
space (i.e. for any realization of the random variables appearing in this
bound). Therefore (12.5) must hold for the random vector ' = &, again for
any point in the probability space.
The solution Z was chosen to minimize the loss function, thus L, (Z) <
Ly(x). This means that for @’ = &, the left hand side of (12.5) is non-
negative. Rearranging the terms, we obtain

|z — 2|2 < V27 D,.

It remains to take expectation of both sides and use Lemma 12.3. This
yields

2w(K)
N

This completes the proof of Theorem 12.1. O

Ellz - 2|3 < v2r
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12.1. Single-bit observations with general non-linearities. The spe-
cific non-linearity of observations that we considered so far — the one given
by sign function — did not play a big role in our argument in the last sec-
tion. The same argument, and surprisingly, the same optimization program
(12.1), can serve any non-linearity in the observations.

So let us consider a general model of single-bit observations y = (y1,...,Ym) €
{—1,1}", which satisfy
Ey; =0({a;,x)), i=1,...,m (12.6)

Here 6 : R — R is some link function, which describes non-linearity of ob-
servations. We assume that y; are independent given a;, which are standard
Gaussian random vectors as before. The matrix form of this model can be
written as

Ey = 0(Ax),

where A is an m x n Gaussian random matrix with rows a;, and where our
convention is that the 0 is applied to each coordinate of the vector Ax.

To estimate @, an unknown vector in a known feasible set K, we will try
to use the same optimization program (12.1) in the last section. This may
be surprising since the program does not even need to know the non-linearity
0, nor does it attempt to estimate 6. Yes, this idea works in general as nicely
as for the specific sign function. The following result from [56] is a general
version of Theorem 12.1.

Theorem 12.4 (Estimation from single-bit observations with general non—
linearity). Assume the unknown vector & € R" satisfies ||z||2 = 1 and =
lies in some known set K C BY. Choose & to be a solution to the program
(12.1). Then

4w (K)

Wi

E|z—z|; <

Here we assume that
A:=Ef(g)g >0 forg~ N(0,1). (12.7)

Proof. The argument follows very closely the proof of Theorem 12.1. The
only different place is the computation of expected loss function in Lemma 12.2.
When the sign function is replaced by a general non-linearity 6, one easily
checks that the expected value becomes

ELg(x') = -\ (z,x').
The rest of the argument is the same. O

For 0(z) = sign(z), Theorem 12.4 is identical with Theorem 12.1. How-
ever, the new result is much more general. Virtually no restrictions are
imposed on the non-linearity 6. In particular, # needs not be continuous or
one-to-one.
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The parameter A simply measures the information content retained through
the non-linearity. It might be useful to express \ as

A=E0((a;,x)) (a;,x),

so A measures how much the non-linear observations 6({a;, x)) are correlated
with linear observations (a;, ).

The assumption that A > 0 is made for convenience; if A\ < 0 we can switch
the sign of #. However, if A = 0, the non-linear and linear measurements
are uncorrelated, and often no estimation is possible. An extreme example
of the latter situation occurs when 6 is a constant function, which clearly
carries no information about x.

12.2. Logistic regression, and beyond. For the link function 0(z) =
tanh(z/2), the estimation problem (12.6) is equivalent to logistic regression
with constraints. In the usual statistical notation explained in Section 7.4,
logistic regression takes the form

Ey = tanh(X3/2).

The coefficient vector [ is constrained to lie in some known feasible set
K. We will leave it to the interested reader to translate Theorem 12.4 into
the language of logistic regression, just like we did in Section 7.4 for linear
regression.

The fact that Theorem 12.4 applies for general and unknown link function
should be important in statistics. It means that one does not need to know
the non-linearity of the model (the link function) to make inference. Be
it the tanh function specific to logistic regression or (virtually) any other

non-linearity, the estimator 3 is the same.

13. GENERAL NON-LINEAR OBSERVATIONS VIA METRIC PROJECTION

Finally, we pass to the most general model of observations y = (y1, ..., ¥m),
which are not necessarily linear or single-bit. In fact, we will not even spec-
ify a dependence of y; on @. Instead, we only require that y; be i.i.d.random
variables, and

each observation y; may depend on a; only through (a;, x). (13.1)

Technically, the latter requirement means that, given (a;, ), the observation
y; is independent from a;. This type of observation models are called single-
index models in statistics.

How can we estimate & € K from such general observation vector y? Let
us look again at the optimization problem (12.1), writing it as follows:

maximize <m’ , ATy> subject to ' € K.
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It might be useful to imagine solving this program as a sequence of two
steps: (a) compute a linear estimate of @, which is

1 1
T = EAT:'J = Z;yiai, (13.2)

and then (b) fitting i, to the feasible set K, which is done by choosing a
point in K that is most correlated with Zj;,.

Surprisingly, almost the same estimation procedure succeeds for the gen-
eral single-index model (13.1). We just need to adjust the second, fitting,
step. Instead of maximizing the correlation, let us metrically project Ty,
onto the feasible set K, thus choosing Z to be a solution of the program

minimize ||’ — Zy, || subject to ' € K. (13.3)

Just like in the previous section, it may be surprising that this estimator
does not need to know the nature non-linearity in observations y. To get a
heuristic evidence of why this knowledge may not be needed, one can quickly
check (using roration invariance) that

Ezy, = Eyia; = A&, where & =x/|x|2, A=Euy (a1, ).

So despite not knowing the non-linearity, Zy;, already provides an unbiased
estimate of x, up to scaling.

A result from [57] provides a guarantee for the two-step estimator (13.2),
(13.3). Let us state this result in a special case where K is a cone, i.e.
tK = K for all t > 0. A version for general sets K is not much more
difficult, see [57] for details.

Since cones are unbounded sets, the standard mean width (as defined in
(3.2)) would be infinite. To get around this issue, we should consider a local
version of mean width, which we can define as

w1 (K)=E sup (g,u), g~ N(0,1).
ue(K—-K)NBY

Theorem 13.1 (Estimation from non-linear observations). Assume the un-
known vector x lies in a known closed cone K in R™. Choose T to be a
solution to the program (13.3). Let € = x/||x||2. Then
Mw1 (K)

vmo

Ex=Xx and E|x—\z|2<

Here we assume that
A=Eyi{a1,2) >0 and M =2r[Ey; + Var (y1 (a1, ) )]1/2.
The proof of Theorem 13.1 is given in [57]. It is not difficult, and is close
in spirit to the arguments we saw here; we will not reproduce it.

The role of parameters A and M is to determine the correct magnitude
and deviation of the estimator; one can think of them as constants that
are usually easy to compute or estimate. By rotation invariance, A and
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M depend on the magnitude ||x||2 (through ;) but not on the direction
& = x/|x||2 of the unknown vector .
We can summarize results of this and previous section as follows.

Using convex programmaing, one can estimate a vector x in
a general feasible set K from m ~ w(K)? random non-linear
observations, even if the non-linearity is not known.

13.1. Examples of observations. To give a couple concrete examples,
consider noisy linear observations

yi = (@i, ) + v;.

We already explored this model in Section 6, where v; were arbitrary num-
bers representing noise. This time, let us assume v; are independent random
variables with zero mean and variance o?. A quick computation gives

A=lzll2, M =C(||z]l2+0).

Theorem 13.1 then yields the following error bound:

Cwi(K)
NLD

Let us give one more example, for the single-bit observations

Elz—=|2 < (Izll2 + o).

yi = sign (a;, x) .

We explored this model in Sections 11 and 12. A quick computation gives

A:¢% M =C.
™

Theorem 13.1 then yields the following error bound:

~ Cwi (K
iz -/ 2af), < CUO

13.2. Examples of feasible cones. To give a couple of concrete examples
of feasible cones, consider the set K of s-sparse vectors in R™, those with at
most s non-zero coordinates. A quick computation yields

wy(K) < Cy/slogn.

Further, solving the program (13.3) (i.e. computing the metric projection of
Zyiy onto K) amounts to hard thresholding of «’. The solution Z is obtained
from &y, by keeping the s largest coefficients (in absolute value) and zeroing
out all other coefficients.

So Theorem 13.1 in this case can be stated informally as follows:

One can estimate an s-sparse vector x in R™ from m ~
slogn non-linear observations y, even if the non-linearity
18 not known. The estimation is given by the hard threshold-
ing of Tyn =m ATy,
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Another popular example of a feasible cone is a set of low-rank matrices.
Let K be the set of di x do matrices with rank at most r. Proposition 10.4

implies that
wl(K) < C\/ T‘(d1 + dg).

Further, solving the program (13.3) (i.e. computing the metric projection
of ' onto K) amounts to computing the best rank-r approximation of .
This amounts to hard thresholding of singular values of Zyy,, i.e. keeping
the leading s terms of the singular value decomposition. This is the same e
already came across this hard thresholding of singular values in the matrix
completion problem, in Theorem 10.5.

So Theorem 13.1 in this case can be stated informally as follows:

One can estimate an di X do matriz with rank r from m ~
r(di+da) non-linear observations, even if the non-linearity is
not known. The estimation is given by the hard thresholding
of singular values of Tyy.

14. SOME EXTENSIONS

14.1. From expectation to overwhelming probability. Many results
in this survey were stated in terms of expected value. One can show that
they hold also with overwhelming probability. This can be done by using
concentration of measure, see [39]. For example, we could use Gaussian
concentration inequality in the proof of M* bound in Section 5. We would
thus obtain the following high-probability version of Theorem 3.12:

tw(K) ct?w(K)? 9
P<diam(KNE) > <e {,7}<2e —cit?), t>1.
For details, see [55].

Correspondingly, one can state high-probability versions of various esti-
mation results. In particular, all results of this survey can be stated for the
mean-squared error E |2 — x||3 instead of E||Z — x|o.

14.2. From global to local mean width. As we have seen, the concept
of Gaussian mean width captures the complexity of a feasible set K quite
accurately. Still, it is not exactly the optimal quantity in geometric and
estimation results. An optimal quantity is the local mean width, which is a
function of radius r > 0, defined as

wr(K)=E sup (g,u), g~ N(0,1I,).
ue(K—K)NrBy

Comparing to Definition 3.4 of the usual mean width, we see that
wp(K) <w(K) forall r.

The usefulness of local mean width was noted in asymptotic convex ge-
ometry by A. Giannopoulos and V. Milman [23, 24, 25, 27]. They showed
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that the function w, (K) completely describes the diameter of high dimen-
sional sections K N E, thus proving two-sided versions of the M* bound
(Theorem 3.12). An observation of a similar nature was made recently by
S. Chatterjee [14] in the context of high dimensional estimation. He noted
that a variant of local mean width provides optimal error rates for the metric
projection onto a feasible set considered in Section 13.

For most results discussed in this survey, one can be replace the usual
mean width by a local mean width, thus making them stronger. Let us
briefly indicate how this can be done for the M* bound (Theorem 3.12; see
[24, 25, 27, 49] for a more detailed discussion.

Such localization is in a sense automatic; it can be done as a “post-
processing” of the M* estimate. The conclusion of the general M™* bound,
Theorem 5.1, for T'NrBY, is that

1
sup ul|s < C’(— E sup g,u) |+ 6) 14.1
ueT:NrB% || H a ueTNrBy | < > | ( )

with high probability (see also Section 14.1.) Let us show that the inter-
section with the ball »B% can be automatically removed from the left side.
Since
sup  |Ju2 = min ( sup [Jul2,r),
ueTNrBy ueT;
it follows that if supyer.qrpy ull2 <7 then supyer, [lull2 < 7. Thus, if the
right side of (14.1) is smaller than r, then sup, 7 [|ull2 < 7.
When applied to the classical M* bound, Theorem 3.12, this argument
localizes it as follows.
wr(K)
r
with high probability.

<cy/m implies diam(KNE)<r

14.3. More general distributions. For simplicity of exposition, the esti-
mation results in this survey were stated for isotropic Gaussian vectors a;.
We showed in Section 8 how to extend the M™ bound and the correspond-
ing linear estimation results for line for sub-gaussian distributions. For more
heavy distributions, a version of M* bound was proved recently in [43]; com-
pressed sensing for such distributions was examined in [37, 38]. However,
it seems to be unknown if Gordon’s Theorem 10.2 and the corresponding
result for exact recovery in general sets (Theorem 9.2) can be extended to
sub-gaussian distributions.

For single-bit observations of Section 12, a generalization for sub-gaussian
distributions is discussed in [2]. Some results can be formulated for anisotropic
Gaussian distributions, where a; ~ N(0,X) with ¥ # I,,, see e.g. [56, Sec-
tion 3.4].

Results for extremely heavy-tailed distributions, such as samples of entries
and random Fourier measurements, exist currently only for special cases of
feasible sets K. When K consists of sparse vectors, reconstruction of « from



51

Fourier measurements (random frequencies of ) was extensively studied in
compressed sensing [16, 36, 12, 32]. Reconstruction of a matrix from a
random sample of entries was discussed in Section 10.4 in the context of
matrix completion problem.

There are currently no results, for instance, about reconstruction of x € K
from random Fourier measurements, where K is a general feasible set. It is
clear that K needs to be incoherent with the Fourier basis of exponentials,
but this has yet to be quantified. In the special case where K is a set of
sparse vectors, basic results of compressed sensing quantify this incoherence
via a restricted isometry property [16, 36, 12, 32].
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