IMBEDDING OF THE IMAGES OF OPERATORS AND REFLEXIVITY OF BANACH SPACES

R. V. Vershinin UDC 517.983.23

We establish a criterion of reflexivity for a separable Banach space in terms of the relation between the imbedding of the images, factorization, and majorization of operators acting in this space.

Let A and B be linear continuous operators acting in a Banach space X. We are concerned with the relation between the following conditions.

- (i) B = A C for some linear continuous operator $C: X \rightarrow X$;
- (ii) $||B^*x^*|| \le K||A^*x^*||$ for some $K \ge 0$ and every $x^* \in X^*$;
- (iii) $\operatorname{Im} B \subset \operatorname{Im} A$, where $\operatorname{Im}(A) = A(X)$.

If X is a Hilbert space, then conditions (i)–(iii) are equivalent. Moreover, the implications (i) \Rightarrow (ii), (i) \Rightarrow (iii), and (iii) \Rightarrow (ii) hold in an arbitrary Banach space X. However, as shown by Douglas, the implication (iii) \Rightarrow (i) may not always hold [2]. In [2], the question was posed as to whether (ii) \Rightarrow (iii) always holds and it was reported without proof in the addendum that Bouldin found a counterexample for which this implication is not true. Here, we give a characterization of separable Banach spaces for which condition (ii) implies condition (iii).

Theorem 1. If X is a reflexive Banach space, then (ii) \Leftrightarrow (iii). If X is a separable nonreflexive Banach space, then there exist nuclear operators A and B acting in X for which condition (ii) is satisfied but conditions (i) and (iii) do not.

First of all, we note that condition (ii) is equivalent to the imbedding $\operatorname{Im} B^{**} \subset \operatorname{Im} A^{**}$. Indeed, as is shown in [2], for linear operators D and E acting in a Banach space Y, the condition

$$||E_V|| \le K||D_V||$$
 for some K and all $y \in Y$

is equivalent to the imbedding Im $E^* \subset \text{Im } D^*$. It remains to set $Y = X^*$, $D = A^*$, and $E = B^*$.

Lemma 1. Let X be a nonreflexive separable Banach space. Then there exist $w^{**} \in X^{**}$ and a biorthogonal sequence $\left\{x_n, x_n^*\right\}_{n=1}^{\infty} \subset X \times X^*$ such that the infinite system of linear equations

$$w^{**}(x_n^*) = x_n^*(x), \quad n = 1, 2, ...,$$

is not satisfied for any $x \in X$.

Proof. Let us imbed the space X canonically into X^{**} [3, p. 199] and consider X as a subspace of X^{**} . Since $X \neq X^{**}$, by virtue of the Riesz lemma [3, p. 73] there exists $w^{**} \in X^{**}$, $||w^{**}|| = 1$, such that

Kharkov University, Kharkov. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 51, No. 2, pp. 260-262, February, 1999. Original article submitted November 4, 1996; revision submitted June 9, 1997.

294 R. V. VERSHININ

$$||w^{**}-x|| \ge 2/3$$
 for every $x \in X$.

Then, by the definition of the norm of a functional X^{**} , for every $x \in X$, there exists $y^* \in X^*$, $||y^*|| = 1$, such that

$$|w^{**}(y^{*}) - y^{*}(x)| \ge 1/2.$$

Thus, if $\{y_n\}_{n=1}^{\infty}$ is an everywhere dense subset of X, there exist functionals $\{y_n^*\}_{n=1}^{\infty} \subset X^*$, $\|y_n^*\| = 1$, such that

$$|w^{**}(y_n^*) - y_n^*(y_n)| \ge 1/2, \quad n = 1, 2, \dots$$

For an arbitrary $x \in X$, there exists a number n such that $||x - y_n|| \le 1/2$. Therefore,

$$|w^{**}(y_n^*) - y_n^*(x)| \ge 1/4.$$

In other words,

$$w^{**} - x \notin \left(\left[y_n^* \right]_{n=1}^{\infty} \right)^{\perp} \quad \text{for every } x \in X.$$
 (1)

(Here, $[x_n]_{n=1}^{\infty}$ denotes the closure of a linear hull of vectors x_n , n = 1, 2, ...).

Let us now orthogonalize $\{x_n\}$ by using the method of Markushevich [4, p. 43]. We have that $Y = \begin{bmatrix} y_n^* \end{bmatrix}_{n=1}^{\infty}$ is a separable subspace of X^* and $\{y_n\}_{n=1}^{\infty} \subset X^{**}$ is a total set over X^* . Therefore, there exists a biorthogonal system $\{x_n^*, x_n\}_{n=1}^{\infty} \subset X^* \times X^{**}$ such that

$$\left\{x_n\right\}_{n=1}^{\infty} \subset \left[y_n\right]_{n=1}^{\infty} = X$$

and

$$\left[x_n^*\right]_{n=1}^{\infty} = Y.$$

By virtue of (1),

$$w^{**} - x \notin ([x_n^*]_{n=1}^{\infty})^{\perp}$$
 for every $x \in X$.

Lemma 1 is proved.

Proof of Theorem 1. If X is reflexive, then $A = A^{**}$, $B = B^{**}$ and, therefore, condition (iii) is equivalent to the imbedding $\operatorname{Im} B^{**} \subset \operatorname{Im} A^{**}$. In view of the remark made above, the last is equivalent to condition (ii).

Let now X be nonreflexive and separable. Since condition (i) always implies condition (iii), it suffices to find some operators A and B such that

$$\operatorname{Im} B^{**} \subset \operatorname{Im} A^{**}$$
, $\operatorname{Im} B \not\subset \operatorname{Im} A$.

We apply now Lemma 1. Let $\{y_n\}_{n=1}^{\infty}$ be an ω -linearly independent sequence in X (i.e., the equality

$$\sum_{n=1}^{\infty} a_n y_n = 0$$

implies $a_n = 0$ for all n) such that the series $\sum_{n=1}^{\infty} \|y_n\| \|x_n^*\|$ converges. Then the nuclear operators

$$A = \sum_{n=1}^{\infty} x_n^* \otimes y_n, \quad B = \sum_{n=1}^{\infty} x_n^* \otimes u_n$$

are well defined. Here,

$$u_n = \begin{cases} \sum_{i=1}^{\infty} w^{**}(x_i^*) y_i & \text{for } n = 1; \\ y_n & \text{for } n = 2, 3, \dots \end{cases}$$

Let us show that $\operatorname{Im} B \subset \operatorname{Im} A$. Indeed, we have $Bx_1 = u_1 \notin \operatorname{Im} A$: If $Au = u_1$ for some $u \in X$, i.e.,

$$\sum_{n=1}^{\infty} x_n^*(u) y_n = u_1 = \sum_{n=1}^{\infty} w^{**}(x_n) y_n,$$

then, by virtue of the ω -linear independence of $\{y_n\}_{n=1}^{\infty}$, it would follow that $x_n^*(u) = w^*(x_n)$, n = 1, 2, ..., which contradicts the assertion of Lemma 1.

Let us show that $\operatorname{Im} B^{**} \subset \operatorname{Im} A^{**}$. We have

$$A^{**} = \sum_{n=1}^{\infty} x_n^* \otimes y_n,$$

$$B^{**} = \sum_{n=1}^{\infty} x_n^* \otimes u_n = D_1 + D_2,$$

where

$$D_1 = x_n^* \otimes \left(\sum_{n=1}^{\infty} w^{**} (x_n^*) y_n \right), \quad D_2 = \sum_{n=1}^{\infty} x_n^* \otimes y_n.$$

(Here, we interpret the functionals x_n^* as elements of X^{***} .)

We fix an arbitrary $x^{**} \in X^{**}$. Then, for the vector $u_1^{**} = x^{**}(x_1^*)w^{**}$, we have $Au_1^{**} = D_1x^{**}$. Therefore, $\operatorname{Im} D_1 \subset \operatorname{Im} A$. Further, let P be a projector in $\begin{bmatrix} x_n^* \end{bmatrix}_{n=1}^{\infty}$ onto $\begin{bmatrix} x_n^* \end{bmatrix}_{n=2}^{\infty}$ along x_1^* . Consider the vector $\hat{u}_2^{**} = P^*\hat{x}^{**}$, where \hat{x}^{**} is the restriction of the functional x^{**} to the subspace $\begin{bmatrix} x_n^* \end{bmatrix}_{n=1}^{\infty}$. Thus, if $u_2^{**} \in X^{**}$ is an arbitrary extension of the functional \hat{u}_2^{**} , then

$$A^{**}u_2^{**} = \sum_{n=1}^{\infty} u_2^{**}(x_n^*)y_n = \sum_{n=1}^{\infty} P^*\hat{x}^{**}(x_n^*)y_n = \sum_{n=2}^{\infty} \hat{x}^{**}(x_n^*)y_n = D_2x^{**}.$$

296 R. V. VERSHININ

Therefore, $\operatorname{Im} D_2 \subset \operatorname{Im} A^{**}$.

Consequently, $\operatorname{Im} B^{**} \subset \operatorname{Im} A^{**}$, and Theorem 1 is proved.

REFERENCES

1. R. G. Douglas, "On majorization, factorization, and range inclusion of operators in Hilbert space," *Proc. Amer. Math. Soc.*, 17, No. 2, 413–415 (1966).

- 2. M. R. Embry, "Factorization on operators in Banach space," Proc. Amer. Math. Soc., 38, No. 3, 587-590 (1973).
- 3. L. A. Lyusternik and V. I. Sobolev, Elements of Functional Analysis [in Russian], Nauka, Moscow (1965).
- 4. I. Lindenstrass and L. Tzafriri, Classical Banach Spaces. I, Springer, Berlin (1977).