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Abstract. We show that the Kadison-Singer problem is equivalent to the
(strong) restricted invertibility conjecture of Bourgain-Tzafriri. We also
show that these two problems are equivalent to two problems in frame the-
ory holding simultaneously: (1) the Feichtinger Conjecture, and (2) the Rε-
Conjecture. Next, we show that Bourgain-Tzafriri restricted-invertibility
principle holds on random subspaces. This extends the principle in several
ways and shows that slightly weaker versions of the conjectures hold.

1. Introduction

If A is a subalgebra of the bounded linear operators B(H) on a Hilbert space
H then a em is a linear functional f ∈ A∗ for which f(I) = 1 and f(T ) ≥ 0
whenever T ≥ 0 (i.e. whenever T is a positive operator). The set of states
is a convex subset of the dual space which is compact in the ω∗-topology. By
the Krein-Milman theorem, this convex set is the closed convex hull of its
extreme points. The extremal elements in the space of states are called the
pure states. In 1959 Kadison and Singer [K-S] posed a problem now famous
as the Kadison-Singer problem.

Kadison-Singer Problem. Does every pure state on an atomic maximal
abelian self-adjoint subalgebra of B(H) extend uniquely to a pure state on
B(H)?

The space B(H) is the most fundamental C∗-algebra and the Kadison-Singer
Problem is an equally fundamental question concerning certain subalgebras of
B(H). Thus, this problem has generated a large body of literature over the
years (see [W] and its references).

It has been known since [K-S] that the Kadison-Singer Problem can be
reformulated in terms of complex matrices where it is known as the paving
conjecture. We will denote CN by HN and let {ei}N

i=1 be the unit vector basis
of HN . Given a subset I of the integers, we denote by PI the orthogonal
projection in `2 onto the subspace spanned by ei, i ∈ I.
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Conjecture 1.1 (The Paving Conjecture ). For ε > 0, there is a constant
M = M(ε) such that for every integer n and every linear operator S on `n

2

whose matrix has zero diagonal, one can find a partition {σj}M
j=1 of {1, · · · , n},

such that

‖Pσj
SPσj

‖ ≤ ε‖S‖ for all j = 1, 2, · · · , M .

A deep analysis of the paving conjecture was done by Bourgain and Tzafriri
[B-Tz].

We are going to show that these two problems are equivalent to a strong form
of the restricted invertibility problem of Bourgain-Tzafriri. This problem arose
from a fundamental result of Bourgain-Tzafriri [BT] in 1987. Bourgain and
Tzafriri [BT] proved the following result known as the Restricted-Invertibility
Theorem:

Theorem 1.2 (Bourgain-Tzafriri). There is a universal constant c > 0 so that
whenever T : `n

2 → `n
2 is a linear operator for which ‖Tei‖ = 1, for 1 ≤ i ≤ n,

there exists a subset σ ⊂ {1, 2, · · · , n} of cardinality |σ| ≥ cn/‖T‖2 so that
∥

∥

∥

∑

j∈σ

ajTej

∥

∥

∥

2

≥ c
∑

j∈σ

|aj|2,

for all choices of scalars {aj}j∈σ.

Theorem 1.2 gave rise to the following conjecture.

Conjecture 1.3 (Strong B-T). There is a universal constant c > 0 so that
for every B > 0 there is a natural number M = M(B) so that if T : `n

2 → `n
2

is a linear operator for which ‖Tei‖ = 1, for all 1 ≤ i ≤ n and ‖T‖ ≤ B, then
there is a partition {Ij}M

j=1 of {1, 2, · · · , n} so that for each 1 ≤ j ≤ M and all
choices of scalars {ai}i∈Ij

we have:
∥

∥

∥

∑

i∈Ij

aiTei

∥

∥

∥

2

≥ c
∑

i∈Ij

|ai|2.

In the next section we will prove

Theorem 1.4. The Kadison-Singer Problem is equivalent to Strong B-T.

Also, in section 3 we will show that the Kadison-Singer Problem is equivalent
to both the Feichtinger Conjecture and the Rε-Conjecture in Hilbert space
frame theory holding at the same time.

In view of the celebrated power of the Probabilistic Method in geometric
functional analysis, one naturally asks whether the Bourgain-Tzafriri Restricted-
Invertibility Theorem 1.2 holds for a random subset σ. More generally, for a
bounded linear operator T on `2 one looks at all sets of the isomorphism σ of
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T , i.e. those subsets of the integers for which the equivalence1

(1.1)
1

4

∑

i∈σ

‖aiTei‖2 ≤
∥

∥

∥

∑

i∈σ

aiTei

∥

∥

∥

2

≤ 4
∑

i∈σ

‖aiTei‖2

holds for all choices of scalars {aj}j∈σ. Then one asks, how large is the family
Σ(T ) of all the sets of the isomorphism of T ? The following dimension-free
result will be proved in Section 4. It gives an asymptotically sharp bound on
the average of the characteristic functions of the sets σ ∈ Σ(T ). This implies
and extends in several ways the Bourgain-Tzafriri’s Restricted-Invertibility
Theorem 1.2.

Theorem 1.5. Let T be a norm one linear operator on `2. Then there exists
a probability measure ν on Σ(T ) such that

ν{σ| i ∈ σ} ≥ c‖Tei‖2 for all i.

This result implies somewhat weaker versions of the Paving Conjecture and
Strong B-T, as we will see in Section 4.

2. Kadison-Singer is equivalent to Strong B-T

We start by reformulating Strong B-T in terms of positive self-adjoint oper-
ators. We will only prove one implication of this which we need for our work
but it can be shown that these are actually equivalent.

Proposition 2.1. Strong B-T has a positive solution if the following holds.
There is a universal constant c > 0 so that for every positive self-adjoint n×n-
matrix S with ones on the diagonal there is a partition {σj}M

j=1 of {1, 2, · · · , n}
with M = M(‖S‖) so that for every j = 1, 2, · · · , M we have

〈SPσj
f, Pσjf〉 = ‖S1/2Pσj

f‖2 ≥ c‖Pσj
f‖2,

for all f ∈ Hn.

Proof. Let T : `n
2 → `n

2 satisfy ‖Tei‖ = 1 for all i = 1, 2, · · · , n. Set
Tei = fi for all i. Consider the positive self-adjoint operator S = T ∗T . By
our assumption, there exists a number M = M(‖S‖) and a partition {σj}M

j=1

of the set {1, · · · , n} such that

〈SPσj
f, Pσjf〉 ≥ c‖Pσj

f‖2 for all j and all f ∈ Hn.

Now,

‖TPσj
f‖2 = 〈TPσj

f, TPσj
f〉 = 〈T ∗TPσj

f, Pσj
f〉 = 〈SPσj

f, Pσj
f〉 =

〈S1/2Pσj
f, S1/2Pσj

f〉 = ‖S1/2Pσj
f‖2 ≥ c‖Pσj

f‖2.

1there is nothing special about the constant 4 in the inequalities; it can be replaced by
any constant larger than 1 in all the results below.
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�
To prove that Kadison-Singer is equivalent to Strong Bourgain-Tzafriri, we

will also use a recent result of Weaver [W] (Conjecture KS ′
r) giving an equiv-

alent form of the Kadison-Singer Problem in terms of frames.

Theorem 2.2 (Weaver). The following are equivalent:
(1) The Kadison-Singer Problem has a positive solution.
(2) There is some natural number r so that there exists universal constants

K ≥ 4 and ε >
√

K such that the following holds. Let {fi}M
i=1 be elements of

HN satisfying ‖fi‖ = 1 for all i and suppose

M
∑

i=1

|〈f, fi〉|2 ≤ K

for every unit vector f ∈ HN . Then there exists a partition {Ij}r
j=1 of {1, 2, · · ·M}

such that
∑

i∈Ij

|〈f, fi〉|2 ≤ K − ε

for every unit vector f ∈ HN and all j = 1, 2, · · · , r.
For the main theorem we will also need a well known result concerning dual

bases.

Proposition 2.3. Let {fi, f
∗
i }N

i=1 be vectors in HN satisfying 〈fi, f
∗
j 〉 = δij

and for all sequences of scalars {ai}N
i=1 we have

∥

∥

∥

N
∑

i=1

aifi

∥

∥

∥
≥ c

(

N
∑

i=1

|ai|2
)1/2

.

Then for all sequences of scalars {bi}N
i=1 we have

∥

∥

∥

N
∑

i=1

bif
∗
i

∥

∥

∥
≤ 1

c

(

N
∑

i=1

|bi|2
)1/2

.

Proof Given scalars {bi}N
i=1 we can find scalars {ai}N

i=1 so that

∥

∥

∥

N
∑

i=1

aifi

∥

∥

∥
= 1 ≥ c

(

N
∑

i=1

|ai|2
)1/2

,

and
∥

∥

∥

N
∑

i=1

bif
∗
i

∥

∥

∥ =

N
∑

i=1

biai ≤
(

N
∑

i=1

|bi|2
)1/2( N

∑

i=1

|ai|2
)1/2
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≤ 1

c

∥

∥

∥

N
∑

i=1

aifi

∥

∥

∥

(

M
∑

i=1

|bi|2
)1/2

=
1

c

(

M
∑

i=1

|bi|2
)1/2

.

�
We are now ready to prove the main result of this section.

Theorem 2.4. The following are equivalent:
(1) The Kadison-Singer Problem has a positive solution.
(2) Strong B-T has a positive solution.

Proof. (1) ⇒ (2): Given the validity of the Paving Conjecture, with ε > 0
fixed and given a positive self-adjoint n×n-matrix S with ones on the diagonal,
there is a partition {σj}M

j=1 of {1, 2, · · ·n} with M = f(‖S‖) so that for every
j = 1, 2, · · · , M we have

‖Pσj
(S − I)Pσj

‖ ≤ ε.

Now, for all f ∈ `n
2 we have

〈SPσj
f, Pσj

f〉 = 〈Pσj
SPσj

f, Pσj
f〉 =

〈Pσj
f, Pσj

f〉 − 〈Pσj
(I − S)Pσj

f, Pσj
f〉 ≥

‖Pσj
f‖2 − ‖Pσj

(I − S)Pσj
Pσj

f‖‖Pσj
f‖ ≥

‖Pσj
f‖2 − ε‖Pσj

f‖‖Pσj
f‖ ≥ (1 − ε)‖Pσj

f‖2.

This verifies the condition given in Proposition 2.1.
(2) ⇒ (1): We will show that Strong B-T implies the condition of Weaver

stated in Theorem 2.2. Choose the universal constant c > 0 in Strong B-T.
Choose K so that

1

c2
≤ K − 2

√
K.

Also, let ε = 2
√

K. Assume that {fi}n
i=1 is a sequence of norm one vectors in

HN satisfying
n
∑

i=1

|〈f, fi〉|2 ≤ K,

for every norm one vector f ∈ HN . We may assume that HN ⊂ `n
2 and define

T : `n
2 → `n

2 by Tei = fi. Note that for all f ∈ `n
2 we have

〈T ∗f, ei〉 = 〈f, T ei〉 = 〈f, fi〉.
Hence,

‖T ∗f‖2 =

n
∑

i=1

|〈f, fi〉|2 ≤ K‖f‖2.
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That is, ‖T ∗‖ ≤
√

K. By Strong B-T, there is an M = f(‖T‖) and a partition
{Ij}M

j=1 of {1, 2, · · · , n} so that for j and all sequences of complex numbers
{ai}i∈Ij

we have:

∥

∥

∥

∑

i∈Ij

aifi

∥

∥

∥
≥ c





∑

i∈Ij

|ai|2




1/2

.

It follows that there are elements {f ∗
i }n

i=1 in `n
2 satisfying Proposition 2.3. In

particular, 1 ≤ ‖f ∗
i ‖ ≤ 1

c
. We define T ∗

j : `n
2 → `n

2 by T ∗
j ei = f ∗

i /‖f ∗
i ‖ if i ∈ Ij

and T ∗
j ei = ei if i /∈ Ij. Now we check the norm of the operator T ∗

j . For any
sequence of scalars {ai}n

i=1 we have

∥

∥

∥
T ∗

j

n
∑

i=1

aiei

∥

∥

∥
=
∥

∥

∥

n
∑

i=1

aiT
∗
j ei

∥

∥

∥
≤
∥

∥

∥

∑

i∈Ij

ai
f ∗

i

‖f ∗
i ‖
∥

∥

∥
+
∥

∥

∥

∑

i/∈Ij

aiei

∥

∥

∥
≤

∥

∥

∥

n
∑

i=1

aif
∗
i

∥

∥

∥
+

√

∑

i/∈Ij

|ai|2 ≤
1

c

√

∑

i∈Ij

|ai|2 +

√

∑

i/∈Ij

|ai|2 ≤ (
1

c
+ 1)

√

√

√

√

n
∑

i=1

|ai|2,

where in the next to last inequality we applied Proposition 2.3. Thus, ‖T ∗
j ‖ ≤

1
c

+ 1. Applying Strong B-T again we can partition Ij into {Ijk}rj

k=1 (where
r(j) = f(1

c
+ 1) is independent of n and N) sets so that for all k = 1, 2, · · · , rj

and all sequences of scalars {ai}i∈Ijk
,

∥

∥

∥

∑

i∈Ijk

aif
∗
i

∥

∥

∥
=
∥

∥

∥

∑

i∈Ijk

ai‖f ∗‖ f ∗
i

‖f ∗
i ‖
∥

∥

∥

≥ c





∑

i∈Ijk

|ai|2‖f ∗
i ‖2





1/2

≥ c





∑

i∈Ijk

|ai|2




1/2

.

For each j, k let Tj,k = TPIjk
. Again applying Proposition 2.3 we have for all

f =
∑

i∈Ijk
aiei,

‖Tj,kf‖ =
∥

∥

∥

∑

i∈Ijk

aifi

∥

∥

∥
≤ 1

c





∑

i∈Ijk

|ai|2




1/2

=
1

c
‖f‖.

That is ‖Tj,k‖ ≤ 1
c
. Finally, we have for all norm one vectors f ∈ `n

2 (and
hence for all f ∈ HN ⊂ `n

2 )

∑

i∈Ijk

|〈f, fi〉|2 = ‖T ∗
j,kf‖2 ≤ ‖T ∗

j,k‖2 = ‖Tj,k‖2 ≤ 1

c2
≤ K − 2

√
K.
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This establishes the vality of the conditions in Theorem 2.2 with r =
∑M

j=1 rj

independent of N and n. �
Theorems 2.1 and 2.4 show that the “obvious approach” to proving Strong

B-T (i.e. a simple triangle inequality as in the proof of the implication (1) ⇒
(2) in Theorem 2.4) is actually the only approach to proving it. Also, it shows
that the universal constant c > 0 in Strong B-T used for the lower `2-bound
can actually be replaced by 1 − ε for any ε > 0 (but in return we have to
increase the number of sets we partition {1, 2, · · · , N} into).

Theorem 2.5. The following are equivalent:
(1) Strong B-T has a positive solution.
(2) The Paving Conjecture has a positive solution.
(3) The Paving Conjecture has a positive solution for positive self-adjoint

operators A with one’s on the diagonal.
(4) For every ε, B > 0 there is a natural number M = M(B, ε) so that for

any natural number n if T : `n
2 → `n

2 is a linear operator for which ‖Tei‖ = 1,
for all 1 ≤ i ≤ n and ‖T‖ ≤ B, then there is a partition {Ij}M

j=1 of {1, 2, · · · , n}
so that for each 1 ≤ j ≤ M and all choices of scalars {ai}i∈Ij

we have:

∥

∥

∥

∑

i∈Ij

aiTei

∥

∥

∥

2

≥ (1 − ε)
∑

i∈Ij

|ai|2.

Proof. (1) ⇔ (2): This is Theorem 2.4.
(2) ⇒ (3) and (4) ⇒ (1): These are obvious.
(3) ⇒ (1): This is Proposition 2.1.
(2) ⇒ (4): This is what is actually shown in the proof of Theorem 2.4,

(1) ⇒ (2). �

3. Kadison-Singer and Frame Theory

The important point in Strong B-T is that we have to increase the number
of elements in our partition as the norm of the operator grows but we always
have the same lower `2-bound c for the partitions. The use of the universal
constant c in Theorem 1.2 as a universal lower `2-bound comes from the form
of the proof of the Theorem. We can weaken this statement a little by allowing
the lower `2-bound to depend also on the norm of the linear operator T . This
form of the conjecture we will call Weak B-T.

Conjecture 3.1 (Weak B-T). For every B > 0 there is a natural number
M = M(B) and a A = A(B) > 0 so that if T : `n

2 → `n
2 is a linear operator

for which ‖Tei‖ = 1, for all 1 ≤ i ≤ n and ‖T‖ ≤ B, then there is a partition
{σj}M

j=1 of {1, 2, · · · , n} so that for each 1 ≤ j ≤ M and all choices of scalars
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{ai}i∈Ij
we have:

∥

∥

∥

∑

i∈σj

aiTei

∥

∥

∥

2

≥ A
∑

i∈σj

|ai|2.

In [CCLV], the authors show that Weak B-T is equivalent to a conjecture of
Feichtinger concerning Hilbert space frames. To state this conjecture we will
need some definitions. A family of vectors {fi}i∈I (I may be finite or infinite)
of elements of a Hilbert space H is called a frame for H (with lower frame
bround A and upper frame bound B) if for all f ∈ H we have:

A‖f‖2 ≤
∑

i∈I

|〈f, fi〉|2 ≤ B‖f‖2.

If there is a constant C > 0 so that ‖fi‖ ≥ C for all i ∈ I, we say that the
frame is bounded. If ‖fi‖ = 1 for all i ∈ I, we call {fi} a unit norm frame.

Recall that {fi}∞i=1 is called a Riesz basic sequence in H if it is a bounded
unconditional basis for its closed linear span. That is, there are constants A, B
so that for all sequences of scalars {ai}∞i=1 we have:

A

∞
∑

i=1

|ai|2 ≤ ‖
∞
∑

i=1

aifi‖2 ≤ B

∞
∑

i=1

|ai|2.

The Feichtinger Conjecture states:

Conjecture 3.2 (Feichtinger). Every bounded frame can be written as a finite
union of Riesz basic sequences.

To relate this to the Kadison-Singer Problem, we need another conjecture
from frame theory. But first a definition.

Definition 3.3. For ε > 0, a family {fi}i∈I of vectors in a Hilbert space H
with ‖fi‖ = 1 is called an ε-Riesz basic sequence if for all sets of scalars {ai}i∈I

we have:

(1 − ε)
∑

i∈I

|ai|2 ≤
∥

∥

∥

∑

i∈I

aifi

∥

∥

∥

2

≤ (1 + ε)
∑

i∈I

|ai|2.

Now we state another conjecture from frame theory.

Conjecture 3.4 (Rε-Conjecture). For every ε > 0, every Riesz basic sequence
is a finite union of ε-Riesz basic sequences.

We will also need Proposition 2.1 from [CCLV] which we state here for
completeness.

Proposition 3.5. Fix a natural number M and assume for every natural
number n we have a partition {In

i }M
i=1 of {1, 2, · · · , n}. Then there are natural

numbers {n1 < n2 < · · · } so that if j ∈ I
nj

i for some i ∈ {1, · · · , M}, then
j ∈ Ink

i , for all k ≥ j. Hence, if Ii = {j|j ∈ I
nj

i } then
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(1) {Ii}M
i=1 is a partition of N.

(2) If Ii = {j1 < j2 < · · · } then for every natural number k we have
{j1, j2, · · · , jk} ⊂ I

njk

i .

Now we can relate our various conjectures.

Theorem 3.6. The following are equivalent:
(1) A positive solution to the Kadison-Singer Problem.
(2) A positive solution to the Feichtinger Conjecture and a positive solution

to the Rε-Conjecture.
(3) For every ε > 0, every bounded frame is a finite union of ε-Riesz basic

sequences.
(4) For every ε, B > 0 there is a natural number M = M(B, ε) so that for

every natural number n ∈ N and for every linear operator T : `n
2 → `n

2 with
‖Tei‖ = 1, for all 1 ≤ i ≤ n and ‖T‖ ≤ B, there is a partition {Ij}M

j=1 of
{1, 2, · · · , n} so that for all 1 ≤ j ≤ M and all choices of scalars {ai}i∈Ij

we
have

(1 − ε)
∑

i∈Ij

|ai|2 ≤
∥

∥

∥

∑

i∈Ij

aiTei

∥

∥

∥

2

≤ (1 + ε)
∑

i∈Ij

|ai|2.

Proof. (3) ⇔ (2): This is obvious.
(4) ⇒ (1): This is Theorem 2.5.
(1) ⇒ (4): Fix n, ε, B > 0 and let T : `n

2 → `n
2 be a linear operator with

‖Tei‖ = 1 for all 1 ≤ i ≤ n and ‖T‖ ≤ B. Choose a 0 < δ < ε so that
1

1−δ
≤ 1 + ε. By Theorem 2.5 (4), there is a partition {Ij}M

j=1 of {1, 2, · · · , n}
so that for all 1 ≤ j ≤ M and for all choices of scalars {ai}i∈Ij

we have

(1 − δ)
∑

i∈Ij

|ai|2 ≤
∥

∥

∥

∑

i∈Ij

aiTei

∥

∥

∥

2

.

It follows that {Tei}i∈Ij
is a Riesz basic sequence and hence there is a dual

basic sequence {fk}k∈Ij
satisfying: fkTei = δki. By Proposition 2.3, for all

choices of scalars {ai}i∈Ij
we have:
∥

∥

∥

∑

i∈Ij

aifi

∥

∥

∥

2

≤ 1

1 − δ

∑

i∈Ij

|ai|2.

In particular,

1 = δ2
ii = [fi(Tei)]

2 ≤ ‖fi‖2 ≤ 1

1 − δ
.

Let gi = fi

‖fi‖ and L : `n
2 → `n

2 be given by Lei = gi, so that ‖Lei‖ = 1. Now,

for all choices of scalars {ai}i∈Ij
we have

∥

∥

∥
L
∑

i∈Ij

aiei

∥

∥

∥

2

=
∥

∥

∥

∑

i∈Ij

aigi

∥

∥

∥

2

=
∥

∥

∥

∑

i∈Ij

ai

‖fi‖
fi

∥

∥

∥

2

≤ 1

1 − δ

∑

i∈Ij

|ai|2
‖fi‖2

≤ 1

1 − δ

∑

i∈Ij

|ai|2.
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Hence, ‖L‖2 ≤ 1
1−δ

. Applying Theorem 2.5 (4) again to partition Ij into

Mj = Mj(
1

(1−δ)
, δ)-sets {I`j}Mj

`=1 so that for all choices of scalars {ai}i∈I`j
we

have (by our choice of δ)

(1 − ε)
∑

i∈I`j

|ai|2 ≤ (1 − δ)
∑

i∈I`j

|ai|2 ≤
∥

∥

∥

∑

i∈I`j

aifi

∥

∥

∥

2

≤ 1

1 − δ

∑

i∈I`j

|ai|2 ≤ (1 + ε)
∑

i∈I`j

|ai|2.

(1, 4) ⇒ (2): Proposition 3.1 of [CCLV] shows that a positive solution to the
Kadison-Singer Problem implies a positive solution to the Feichtinger Conjec-
ture. So we check the Rε-Conjecture. Let {fi}i∈I be a Riesz basic sequence
in `2 with ‖fi‖ = 1 and fix ε > 0. By (4) of Theorem 2.5, for each natural
number n, there is a partition {In

j }M
j=1 of {1, 2, · · · , n} so that {ϕi}i∈In

j
is an

ε-Riesz basic sequence for all j = 1, 2, · · · , M . Let {Ij}M
j=1 be the family given

in Proposition 3.5. Fix 1 ≤ j ≤ M . If Ij = {j1 < j2 < · · · }, then for every k
we have that {j1, j2, · · · , jk} ⊂ Ink

j and so {fj`
}k

`=1 is a ε-Riesz basic sequence.
Hence, {fi}i∈Ij

is an ε-Riesz basic sequence for all j = 1, 2, · · · , M .
(2) ⇒ (3): This is obvious.
(3) ⇒ (4): We proceed by way of contradiction. If (3) holds but (4) fails,

then there is an ε, B > 0 and natural numbers m1 < m2 < · · · and linear
operators Tn : `mn

2 → `mn

2 with ‖Tne
n
i ‖ = 1, ‖Tn‖ ≤ B and for every partition

{In
j }n

j=1 of {1, 2, · · · , mn} we have that the inequality in (4) fails. Let

H =

( ∞
∑

n=1

⊕`mn

2

)

`2

.

Now,
{en

i } mn, ∞
i=1,n=1 ∪ {Tnen

i } mn, ∞
i=1,n=1,

is a unit norm frame for H and so by (3) it is a finite union of ε-Riesz basic
sequences. In particular, {Tnen

i } mn, ∞
i=1,n=1 is a union of, say M , ε-Riesz basic

sequences. For n > M , {Tnen
i }mn

i=1 is a union of M δ-Riesz basic sequences say
{Ij}M

j=1. So for every j and all sets of scalars {ai}i∈Ij
we have

(1 − ε)
∑

i∈Ij

|ai|2 ≤ ‖
∑

i∈Ij

aiTnen
i ‖2 ≤ (1 + ε)|

∑

i∈Ij

|ai|2.

This completes the proof of (3) ⇒ (4) and of the theorem. �

4. Random Restricted Invertibility

Here we study the the family Σ(T ) of all sets of the isomorphism of arbitrary
bounded linear operator T on `2.
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Our first impression is that the family Σ(T ) is small. Indeed, for an even
integer n, consider the linear operator T on `n

2 defined by Tei = 1√
2
edi/2e. Every

subset σ ∈ Σ(T ) contains no pairs of the form {2i − 1, 2i}, hence |Σ(T )| =
3n/2−1 � 2n. However, the subsets {1, 3, 5, · · · , n−1} and {2, 4, 6, · · · , n} both
belong to Σ(T ), and the average of the characteristic functions of these subsets
is a half of the characteristic function of the whole interval {1, 2, · · · , n}.

This shows that Bourgain-Tzafriri Restricted-Invertibility Theorem 1.2 does
not hold for random subsets σ in the classical sence of randomness. However
Σ(T ) is large in another sense – the following result shows that the average
of the characteristic functions of the sets σ ∈ Σ(T ) is nicely bounded below.
This implies Bourgain-Tzafriri Theorem, as we will see shortly.

Theorem 4.1. Let T be a norm one linear operator on `2. Then there exists
a probability measure ν on Σ(T ) such that

(4.1) ν{σ| i ∈ σ} ≥ c‖Tei‖2 for all i.

In this theorem and throughout this section, c denotes a positive absolute
constant.

Note that the left hand side of (4.1) clearly equals
∫

Σ(T )
χσ(i) dν(σ).

The next two results follow immediately from Theorem 3.1. However, as
we will see, they also imply Theorem 3.1 and so we will actually prove them
independently later and use them to prove Theorem 3.1.

Let µ be a measure on N; for simplicity we will denote µ({i}) by µ(i).
Summing over i with weights µ(i) in (4.1), we obtain

∫

Σ(T )

µ(σ) dν(σ) =
∑

i

µ(i)

∫

Σ(T )

χσ(i) dν(σ) ≥ c
∑

i

µ(i)‖Tei‖2.

This proves the following corollary.

Corollary 4.2. Let T be a norm one linear operator on `2, and let µ be a
measure on N. Then there exists a set σ ∈ Σ(T ) such that

(4.2) µ(σ) ≥ c
∑

i

µ(i)‖Tei‖2.

Corollary 3.2 was essentially proved by S.Szarek [Sz] with only the upper
bound in (1.1).

For the counting measure on N, Corollary 4.2 proves the existence of a set
σ ∈ Σ(T ) with cardinality |σ| ≥ c‖T‖2

HS (where ‖T‖HS denotes the Hilbert-
Schmidt norm of T ). It is known [V] that the constant c in this estimate can
be improved to 1 − ε for any ε > 0 at the cost of replacing 4 in the definition
of Σ(T ) by a number depending on ε.

An immediate consequence of Corollary 4.2 is
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Corollary 4.3. Let T be a linear operator on `2 with ‖Tei‖ = 1 for all i, and
let µ be a measure on N. Then there exits a subset σ of the integers such that
µ(σ) ≥ c/‖T‖2 and

(4.3)
1

2
‖x‖ ≤ ‖Tx‖ ≤ 2‖x‖ for x ∈ R

σ.

This result contains the Bourgain-Tzafriri restricted-invertibility principle,
Theorem 1.2, as is seen by considering the uniform measure on {1, · · · , n}.

We pass now to the proof of Theorem 4.1, which relies on the methods of
Bourgain-Tzafriri [B-Tz] and of [V].

In [B-Tz], a suppression analogue of Theorem 4.1 is proved. By Pσ we denote
the orthogonal projection in Rn onto Rσ, where σ is a subset of {1, · · · , n}.
Theorem 4.4 (Bourgain-Tzafriri). Let S be a linear operator on `2 whose
matrix relative to the unit vector basis has zero diagonal. For an ε > 0, denote
by Σ′(S, ε) the family of all subsets σ of the integers such that ‖PσSPσ‖ ≤
ε‖S‖. Then there exists a probability measure ν ′ on Σ′(S, ε) such that

(4.4) ν ′{σ| i ∈ σ} ≥ cε2 for all i.

This implies a weaker version of Corollary 4.3. Indeed, under the assump-
tions of Corollary 4.3 we automatically have ‖T‖ ≥ 1; let S = T ∗T − I and
ε = 1

2‖S‖ ≥ 1
4‖T‖2 . Then for every σ ∈ Σ′(S, ε) and every x ∈ Rσ, ‖x‖ = 1, we

have
∣

∣‖Tx‖2 − ‖x‖2
∣

∣ = 〈Sx, x〉 = 〈PσSPσx, x〉 ≤ ε‖S‖ =
1

2
.

Hence (4.3) holds. Now, summing over i in (4.4), we obtain
∫

Σ′(S,ε)

µ(σ) dν ′(σ) =
∑

i

µ(i)

∫

Σ′(S,ε)

χσ(i) dν ′(σ)

≥
(

∑

i

µ(i)
)

cε2 & 1/‖T‖4.

Replacing the integral by the maximum, we conclude:

(4.5) Corollary 4.3 holds with µ(σ) ≥ c/‖T‖4.

We will use this weaker estimate in the proof of the actual Corollary 4.3.
One way to do this is to apply the weaker form of Corollary 4.2 due to Szarek
(see the remark above) and then apply (4.5) to the operator T1 : `σ

2 → `2 that
sends ei to Tei

‖Tei‖ , i ∈ σ. Since ‖T1‖ ≤ 2, Corollary 4.3 will follow.

We will chose another way, which will actually yield a stronger form of
Szarek’s result (i.e. with both sides in (1.1)) as a byproduct. The proof of
Theorem 4.1 will be organized backwards: Corollary 4.3 =⇒ Corollary 4.2
=⇒ Theorem 4.1. Corollary 4.3 itself will be a consequence of the following
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suppression result, which is a “weighted” variant of an unpublished theorem
of Kashin and Tzafriri [K-Tz] (see [V]) and a slight improvement of a result
of Szarek [Sz].

Theorem 4.5. Let T be a linear operator on `2, and µ be a probability measure
on N. Then for any 0 < δ < 1/4 there exists a subset σ of the integers with
µ(σ) ≥ δ and such that

‖TPσ‖ ≤ c
√

δ‖T‖ + c
(

∑

i

µ(i)‖Tei‖2
)1/2

.

The proof uses standard tools, a random selection followed by the Grothendieck
factorization. The random selection is done in the next lemma. Let 0 < δ < 1.
Consider random selectors δi, i.e. independent {0, 1}-valued random variables
with Eδi = δ. Then the linear operator Pδ :=

∑

i δi ei ⊗ ei is a random orthog-
onal projection in `2.

Lemma 4.6. Let T be a linear operator on `n
2 and let µ be a probability measure

on {1, · · · , n}. Then for 0 < δ < 1/4 a random coordinate projection Pδ :=
∑n

i=1 δi ei ⊗ ei satisfies

E‖PδT
∗‖`n

2
→Ln

1
(
√

µ) ≤ δ‖T‖ + 2
√

δ
(

n
∑

i=1

µ(i)‖Tei‖2
)1/2

,

where the space Ln
1 (
√

µ) is R
n equipped with the norm

‖x‖Ln
1
(
√

µ) =
n
∑

i=1

√

µ(i)|x(i)|.

Proof. This is the Gine-Zinn’s symmetrization scheme,

(4.6) E‖PδT
∗‖`n

2
→Ln

1
(
√

µ) = E sup
x∈B(`n

2
)

n
∑

i=1

δi

√

µ(i)|〈Tei, x〉|

≤ δ sup
x∈B(`n

2
)

n
∑

i=1

√

µ(i)|〈Tei, x〉| + E sup
x∈B(`n

2
)

n
∑

i=1

(δi − δ)
√

µ(i)|〈Tei, x〉|.

By Hölder’s inequality, the first sumand is bounded by

δ sup
x∈B(`n

2
)

(

n
∑

i=1

|〈Tei, x〉|2
)1/2

= δ‖T‖.

To bound the second summand in (4.6), let δ′i be independent copies of δi.
Then (δi − δ) can be replaced by (δi − δ′i), which (by the symmetry) has the
same distribution as εi(δi− δ′i), where εi denote Rademacher random variables
(independent random variables taking values −1 and 1 with probability 1/2).
So (δi − δ) in (4.6) can be replaced by 2εiδi, which can further be replaced
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(by the standard comparison inequality) by giδi, where gi are independent
normalized Gaussian random variables. These probabilistic techniques, as well
as Slepian’s inequality below, can be found in [L-T] sections 3 and 6. Hence

E‖PδT
∗‖`n

2
→Ln

1
(
√

µ) ≤ δ‖T‖ + 2E sup
x∈B(`n

2
)

n
∑

i=1

giδi

√

µ(i)|〈Tei, x〉|.

By Slepian’s inequality, |〈Tei, x〉| can be replaced by 〈Tei, x〉, and we continue
the estimate as

≤ δ‖T‖ + 2E

∥

∥

∥

n
∑

i=1

giδi

√

µ(i)Tei

∥

∥

∥

≤ δ‖T‖ + 2
(

E

n
∑

i=1

δiµ(i)‖Tei‖2
)1/2

= δ‖T‖ + 2
√

δ
(

n
∑

i=1

µ(i)‖Tei‖2
)1/2

.

The proof is complete.

The Grothendieck factorization is done in the following lemma.

Lemma 4.7. Let T : `n
2 → `2 be a linear operator and let µ be a measure on

{1, · · · , n} of total mass m. Then there exists a subset σ ∈ {1, · · · , n} such
that µ(σ) ≥ m/2 and

‖TPσ‖`n
2
→`2 ≤

c√
m
‖T‖Ln

∞
(
√

µ)→`2,

where the space Ln
∞(

√
µ) is R

n equipped with the norm

‖x‖Ln
∞

(
√

µ) = max
i≤n

|x(i)|
√

µ(i)
.

Proof. Consider the isometry ∆ : Ln
∞(

√
µ) → Ln

∞ defined as (∆x)(i) = |x(i)|√
µ(i)

.

By the Grothendieck theorem (see [TJ] Corollary 10.10), the operator T∆−1 :
Ln
∞ → `2 is 2-summing, and its 2-summing norm is bounded as

π2(T∆−1) ≤ c‖T∆−1‖Ln
∞
→`2 = c‖T‖Ln

∞
(
√

µ)→`2 =: M.

By Pietsch’s Theorem (see [TJ] Corollary 9.4), there exists a probability mea-
sure λ on [n] = {1, · · · , n} so that

‖T∆−1‖L2([n],λ)→`2 ≤ M.

Hence for every x ∈ Rn,

‖T∆−1x‖`2 ≤ M
(

n
∑

i=1

λ(i)|x(i)|2
)1/2

,
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and thus

‖Tx‖`2 ≤ M
(

n
∑

i=1

λ(i)

µ(i)
|x(i)|2

)1/2

.

Since 1
m

∫

[n]
λ(i)
µ(i)

dµ(i) = 1
m

∑n
i=1 λ(i) = 1

m
, Chebyshev’s inequality gives

1

m
µ
{

i
∣

∣

∣

λ(i)

µ(i)
≤ 2

m

}

≥ 1/2.

Hence there exists a subset σ ⊂ [n] with µ(σ) ≥ m/2 and such that

λ(i)

µ(i)
≤ 2

m
for all i ∈ σ.

Thus for every x ∈ Rσ

‖Tx‖`2 ≤
√

2

m
M
(

n
∑

i=1

|x(i)|2
)1/2

.

This completes the proof.

Proof of Theorem 4.5. By approximation, we can assume that T acts on
`n
2 and δ > C/n with a sufficiently large absolute constant C. Then we apply

Lemma 4.6. Since Eµ(σ) = E
∑n

i=1 δiµ(i) = δ, the classical estimates on the
binomial tails imply that µ(σ) ≥ δ/2 with probability greater than 1/2. Then
there exists a subset σ ⊂ {1, · · · , n} such that µ(σ) ≥ δ/2 and, by duality,

‖TPσ‖Ln
∞

(
√

µ)→`n
2
≤ 2δ‖T‖ + 4

√
δ
(

n
∑

i=1

µ(i)‖Tei‖2
)1/2

.

Next we apply Lemma 4.7 for the operator TPσ : Lσ
∞(

√
µ) → `n

2 with m =
µ(σ) ≥ δ/2. There exists a subset σ′ ⊂ σ with µ(σ′) ≥ δ/4 and such that

‖TPσ′‖`σ
2
→`n

2
≤ c√

δ
‖T‖Lσ

∞
(
√

µ)→`n
2

≤ c
√

δ‖T‖ + c
(

∑

i

µ(i)‖Tei‖2
)1/2

.

This proves the theorem.

Proof of Corollary 4.3. Applying Theorem 4.5 with δ = 1
4‖T‖2 , we find a

subset σ ⊂ N with µ(σ) ≥ 1
4‖T‖2 and such that

‖TPσ‖ ≤ c.

Next, we apply Theorem 4.4; more precisely, its consequence (4.5) for the
operator TPσ : `2 → `2 and for the probability measure µ conditioned on σ,
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i.e. for µ′ defined as µ′(η) = µ(η ∩ σ)/µ(σ), η ⊂ N. There exists a subset
σ′ ⊂ σ with µ(σ′) ≥ cµ(σ) ≥ c/‖T‖2 and such that (4.3) holds for all x ∈ R

σ′

.
This completes the proof.

To prove Corollary 4.2, we introduce a splitting procedure. Consider a
family ηk, k = 1, · · · , n of disjoint subsets of the integers. This family defines a
splitting of a probability measure λ on {1, · · · , n} and of any sequence (xi)i≤n

in `2. Namely, put

η =
⋃

i≤n

ηi, N = |η|, and Ni = |ηi|.

Then the splitted probability measure λ′ on η and the splitted sequence (x′
k)k∈η

are defined as

λ′(k) =
λ(i)

Ni
, x′

k =
xi√
Ni

for k ∈ ηi.

Splitting will be used to make the norms ‖xi‖ almost identical. Namely, one
can easily construct a splitting such that

0.9‖x′
l‖ ≤ ‖x′

k‖ ≤ 1.1‖x′
l‖ for all k, l ∈ η.

Since
∑

k∈η ‖x′
k‖2 =

∑n
i=1 ‖xi‖2 =: h, we have a postiori:

‖x′
k‖ ∼

√

h

N
for all k ∈ η,

where a ∼ b means 1
2
a ≤ b ≤ 2a. Moreover, since ‖x′

k‖ = ‖xi‖√
Ni

for k ∈ ηi, we

also have
1

Ni
=

‖x′
k‖2

‖xi‖2
∼ h

N
· 1

‖xi‖2
,

hence

λ′(k) =
λ(i)

Ni
∼ h

N
· λ(i)

‖xi‖2
for k ∈ ηi.

Let T : `n
2 → `2 be a linear operator defined as Tei = xi, i = 1, · · · , n. The

splitting of T is defined as the linear operator T ′ : `η
2 → `2 acting as T ′ek = x′

k,
k ∈ η. An easily checked but important property is

‖T ′‖ ≤ ‖T‖.

Proof of Corollary 4.2. By approximation, we can assume that T is
an operator from `n

2 into `2. Then, by the procedure described above, for
any probability measure λ on {1, · · · , n} there exists a splitting η =

⋃

i≤n ηi,
|η| = N , such that that the splitted measure λ′ on η and the splitted operator
T ′ : `η

2 → `2 satisfy:
(1) ‖T ′‖ ≤ ‖T‖ ≤ 1,
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(2) For k ∈ η, ‖T ′ek‖ ∼
√

h
N

, where h = ‖T‖2
HS,

(3) For k ∈ ηi, λ′(k) ∼ h
N
· λ(i)
‖Tei‖2 .

We apply Corollary 4.3 to the operator S : `η
2 → `2 defined as

Sek =
T ′ek

‖T ′ek‖
, k ∈ η.

Note that

‖S‖ ≤ max
k∈η

‖T‖
‖T ′ek‖

≤ 2

√

N

h
.

Therefore there exists a subset σ′ ⊂ η such that

(4.7) σ′ ∈ K(S) and λ′(σ′) ≥ c
h

N
.

Now the crucial fact is that for every i the set σ ′ ∩ ηi contains at most one
element (denoted by ki if it exists). This is because for a fixed i, the vectors
(Sek, k ∈ ηi) are all multiples of one vector; while, since σ′ ∈ K(S), the set
(Sek, k ∈ σ′) can not contain colinear vectors, as they would fail the lower
bound in (1.1).

Let σ = {i | σ′ ∩ ηi 6= ∅}. Then σ ∈ Σ(T ), and

λ′(σ′) =
∑

i∈σ

λ′(ki) ∼
h

N

∑

i∈σ

λ(i)

‖Tei‖2
.

This and (4.7) imply

(4.8)
∑

i∈σ

λ(i)

‖Tei‖2
≥ c.

The conclusion of the Corollary follows by applying (4.8) to the probability
measure λ defined as

λ(i) =
µ(i)‖Tei‖2

∑n
i=1 µ(i)‖Tei‖2

, i = 1, · · · , n.

Actually, (4.2) and (4.8) are easily seen to be equivalent. Indeed, one can

get (4.8) by applying Corollary 4.2 to the measure µ defined by µ(i) = λ(i)
‖Tei‖2 .

Proof of Theorem 4.1. This argument is a minor adaptation of [B-Tz]
Corolary 1.4. Σ(T ) is a w∗-compact set. For each integer i, define a function
πi ∈ C(Σ(T )) by setting

πi(σ) =
χσ(i)

‖Tei‖2
, σ ∈ Σ(T ).
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Let H be the convex hull of the functions (πi). Fix a π ∈ H and write it
as a convex combination π =

∑

i λiπi. By Corollary 4.2, or rather by its
consequence (4.8), there exists a set σ ∈ Σ(T ) such that π(σ) ≥ c. Looking at
σ as a point evaluation functional on C(K), we conclude by the Hahn-Banach
theorem that there exists a probability measure ν ∈ C(Σ(T ))∗ such that

ν(π) =

∫

Σ(T )

π(σ) dν(σ) ≥ c for all π ∈ H.

Applying this estimate for π = πi, we obtain
∫

Σ(T )

χσ(i) dν(σ) ≥ c‖Tei‖2,

which is exactly the conclusion of the theorem.

While Theorem 4.1 seems to be unable to yield the conjectures under dis-
cussion, it proves that every bounded frame (and actually very bounded Bessel
sequence) has many Riesz basic subsequences.

Theorem 4.8. If {fi}∞i=1 is a Bessel sequence with Bessel constant B > 0
and ‖fi‖ = 1, then there exists a probability measure ν on the set K of all
Riesz basic subsequences of {fi} with Riesz basis constant 2, such that the
measure ν of the subsequences in K that contain any given element fi is at
least b = b(B) > 0.

Finally, we state a conjectured “paving” analogue of Theorem 4.1 that would
clearly imply Conjectures 3.2, 3.1, 1.3 and 1.1.

Conjecture 4.9. Let T be a linear operator on `n
2 such that ‖Tei‖ = 1 for

all i. Then there exists a partition {σk}k≤M of the set {1, · · · , n}, where M
depends only on the norm of T , and such that σk ∈ Σ(T ) for all k.

To see the relation to Theorem 4.1, assume that this conjecture is true, and
let ν be the probability measure on Σ(T ) that assigns each σ(k) measure 1/M .
Then

ν{σ| i ∈ σ} ≥ 1/M for all i.

If moreover M ∼ 1/‖T‖2, then this clearly implies Theorem 4.1 for operators
T such that ‖Tei‖ have same value for all i.
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