Sections of Convex Bodies via the
Combinatorial Dimension

(Rough notes - no proofs)

These notes are centered at one abstract result in combinatorial geometry,
which gives a ”coordinate” approach to several classical problems in the
asymptotic geometric analysis. Some of these include: the volume ratio
method, Elton theorem, Bourgain-Tzafriri theory of restricted invertibility
of matrices, Dvoretzky theorem (which is Milman’s theorem on euclidean
subspaces).

1 Introduction

One of the main aims is to prove the following combinatorial result that
compares the volume in R™ to the inner volume, which is the number of the
unit cells of Z" contained in a set.

Theorem 1 Let K be a convex body in R™ with volume at least 1. Then
there exists a coordinate projection P in R™ such that

vol(PK) > vol(cK),
where ¢ is a positive absolute constant.

Notice the lack of homogeneity, because the inner volume is taken in a
lower dimensional subspace than the volume. Usually this automatically
implies that P has large rank, and in particular PK contains a cube of side
1. Dualizing, we obtain a large coordinate section of K which is contained
in B}, the octahedron with coordinate unit vertices. This method quickly
yields, for example, a generalization of the classical volume ratio theorem
due to Szarek and Tomczak-Jaegermann.



Theorem 2 (Coordinate Volume Ratio) Let K be a conver symmetric
body in R™ that contains the unit cube [—1,1]". Then, for every 1 < k <mn,
there exists a coordinate subspace E in R™ of codimension k and such that

KNEC|cK|Y* nBr.

To deduce the classical volume ratio theorem note a further (random)
section of the normalized octahedron nB7 is the normalized euclidean ball

N

Theorem 1 in particular implies and is equivalent to, the estimate

vol(eK) < 3 vol( P, ),

where the sum is over all subsets o of [n], and P, is the coordinate projection
in R” onto R? (to the empty set we assign the summand 1). The question
is, whether the left hand side can be improved to N(cK, [0, 1]™), the number
of the unit cubes needed to cover cK. This number is easily seen to be
majorized by vol(cK).

While this problem remains open, we essentially prove this for the nor-
malized euclidean ball instead of the cube [0, 1], which seems to enough for
current applications that include, in particular, Bourgain-Tzafriri’s theory of
restricted invertibility of linear operators [BT 87], [BT 91], Elton theorem on
l;-subspaces [E], [T 92], [MV], and, at least one-sided, Dvoretzky theorem
for coordinate sections.

Let D be an ellipsoid which contains [0, 1]*. The standard volumetric
argument gives

vol(K + D)

N(K, D) = vol(D)

<vol(K + D). (1)

We prove an asymptotically better general estimate

N(K,cD)'? <> vol(P, K). (2)

Remarks. 1. The right hand side of (2) is clearly bounded by

> " vol(P, ) = vol(K +[0,1]")
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([Pa] Theorem 1.10). To compare this with (1) note that [0, 1]™ can be covered
by one translate of D.

2. There is nothing special in the exponent 1/2 in (2); it can be improved
to any constant strictly less than one, but I do not know whether it can equal
one.

3. There is much flexibility in D: it can be replaced, for example, by a
normalized ball of [}/, 0 < p < oo; then ¢ needs to be replaced by a constant
depending on p. As stated above, it is not known whether (2) is true in the
extremal case p = oo, i.e. with D = [0,1]", but a weaker inequality holds
and is discussed in Section 3.

4. The convexity of K plays almost no role in the result; its proof is
combinatorial and probabilistic. For example, a weaker notion of convexity
(separate convexity, see [M]) would be enough.

The sum in (2) may contain many vanishing terms, as it may happen that
vol(K') = 0 even though K is nonempty. Let for simplicity K be symmetric
with respect to the origin. Then the maximal cardinality of o in (2) for which
the summand is non-zero is at most d(2K), where

d(K) = max{|o| : [-1,1]" C P,K}.

The number d(K) is called the combinatorial dimension of K. This pa-
rameter carries over from combinatorics to convexity the classical Vapnik-
Chernovenkis dimension, defined for discrete sets A C {—1,1}" as the max-
imal cardinality of o for which {—1,1}? C P, A. Inequality (2) can therefore
be used to estimate the euclidean entropy of K through the combinatorial
dimension of K. This was a problem solved partially in a series of papers of
Talagrand (see [T 96], [T 92], [T 02]) and then completely in [MV]. Inequal-
ity (2) is, in a sense, a more general result. Its proof, combining probabilis-
tic and combinatorial methods, is built upon [MV]. The weaker result for
D = [0, 1]™ solves one of the problem of Alon et al. from [ABCH].

By duality, d(K') measures the largest dimension of a coordinate section
of K contained in B}, the unit ball of [ (equivalently, B} is the convex hull
of £ the unit vector basis of R™). Then, as a consequence of (2), we obtain
(but this requires a proof) the following generalization of Elton’s theorem [E],
[T 92], which can be viewed as a one-sided Dvoretzky theorem for coordinate
sections.

Recall that the M-estimate of K is defined as Mg = [q, . ||z]|x do(z),
where o is the normalized Lebesgue measure on the unit euclidean sphere
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S™ 1t and || - ||x is Minkowski functional of K.

Theorem 3 Let K be a symmetric conver body containing BY, the unit eu-
clidean ball in R™. Let M = Mg log '%(2/My). Then there exists a subset
o of {1,...,n} of size |o| > cM?n, and such that

cM - (K NR%) c /o] BS. (3)

Recall that Dvoretzky theorem guarantees, for M = M, the existence of a
subspace E of dimension dim £ > ¢M?n and such that

aBNECM-(KNE)CceBlNE.

To compare this to (3) note that for a random subpace E in R?, the section
V]e|Bf N E is equivalent to By N E (with high probability), which therefore
recoveres the right hand side of Dvoretzky theorem. Of course, its left hand
side could not be recovered in general on coordinate sections, as the example
of K =[-1,1]" shows.

Considering the identity operator I — (R™, || - ||x) and replacing it by
arbitrary operator 7', one can view Theorem 3 as a result on the “restricted
invertibility” of operators from [ into arbitrary Banach space, generalizing
results of Bourgain and Tzafriri [BT 87| proved for operators on {5 only. This
will be discussed in Section 4.

2 Covering by balls

Definition 4 (see [M]) A set K in R™ is called coordinate convex if, for
every point x and every choice of signs 0 € {—1,1}" one can find y € K
such that for all ¢

> (i) if (i) =1,
) < az(i) if0(i) = —1.
Clearly, every convex set is coordinate convex; the converse is not true,
as shows the example of a cross {(z,y) | x =0 or y = 0} in R%
Next theorem estimates the euclidean entropy of K through the inner
Jordan measure of its coordinate projections.



Theorem 5 There exists an absolute constant ¢ such that the following holds.
Let K be a coordinate convex set in R™, and D be an ellipsoid which contains
the cube [0,c]” and whose axes are colinear to the unit vector basis of R™.
Then

N(K,D)"? <) " vol(P,K).

Proof. To be included. ]

3 Covering by cubes

Although it is not known whether (2) is true when D is replaced by the cube
[0,1]™, this if true if one reduces the exponent 1/2.

Theorem 6 There exists an absolute constant ¢ such that the following holds.
Let K be a coordinate convex set in R™, and let 0 < ¢ < 1/2. Then for
D =[0,c/e]™ we have:

N(K, D) < 3 vol(P, K), (4)

where A = logs(m).

Let us deduce from this an almost optimal entropy bound for K through
the combinatorial dimension of K, a problem studied in particular in [ABCH].
Naturally, the definition of the combinatorial dimension of a general set K
needs to allow translations:

d(K) =max{|o|: [-1,1]° C 2+ F,K},

where the maximum is over the subsets o and translates x € R", see [ABCH],
[T 02].
Assume that K is a subset of a cube [0,b]". Then the right hand side of

(4) is bounded by
d(K)

> (Z) b (5)



This can be viewed as a “continuous” version of Sauer-Shelah Lemma, a
classical result which states that for a discrete set A C {—1,1}" one has

d(A)

N0 =14 < Y (Z)

Since (5) is asymptotically bounded by (bn/d(K))¥5), a straightforward
arithmetics gives

Corollary 7 Under assumptions of Theorem 6, assume also that K is a
subset of a cube [0,b]"™. Then
log N(K, D) < d(K) -log" ™ (bn/d(K)). (6)

This was proved by Alon et al. [ABCH] with exponent 2 instead of 1 + ¢; it
has been a question whether 2 can be reduced.
Inequality (6) is best complemented by the trivial lower bound

log N(K,c1D) > d(K)

for some absolute constant ¢;. This means that the entropy of K is nicely
controlled by the combinatorial dimension of K.

Proof of Theorem 6. To be included. ]

4 Bourgain-Tzafriri’s principle

Theorem 3 can be stated as a restructed invertibility result. In this form, it
generalizes Theorem 1.5 [BT 87] proved for operators on (%, and also Theorem
5.2 there.

Recall that the f-norm of T : I — X is defined as ((T) = [q,, || Tx| x do(x).

Theorem 8 Let X be a Banach space and T': 1} — X be a linear operator
with £(T') > \/n. Then there exists a subset o of {1,...,n} of size

o] > 2 Cng,z
17°]|> log™ || 7|

and such that

|Tz|| > clog™ ¢ ||T| - Nl forz € R?.
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For X = [% the logarithmic factors can be dropped and the result is the
principle restricted invertibility due to Bourgain and Tzafriri ([BT 87] The-
orem 1.1). It is not known whether the logarithmic factors can be dropped
in general.

llz]ly

Remark. If the space X has type 2, then the ratio ol can be replaced

simply by c¢i||z||, where the constant ¢; > 0 depends only on the type 2
constant of X (and actually equals its reciprocal)!. This is done by a standard
factorization argument using Maurey factorization theorem.
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