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Abstract

We show that every Banach space with a finite-dimensional decomposition has a basis

with brackets which is uniformly minimal and such that some its block sequences fail to

be strong M-bases. In particular, this shows for every Banach space that the property

of a sequence to be strong M-basic is not stable under passing to block-sequences.

1 Main definitions

We recall some standard notions which can be found in [3].
Given sets K in X and V in X∗, we shall use the following notation: K⊥ = {x∗ ∈ X∗ :

x∗(x) = 0 for all x ∈ K} and V > = {x ∈ X : x∗(x) = 0 for all x∗ ∈ V }. A set V in X∗ is
called total if V > = {0}.

The closed linear span of a sequence (or a ”system”) {xn}∞1 of vectors in X is denoted by
[xn]∞1 . A sequence {xn}∞1 is called minimal if xm /∈ [xn]n6=m for all m = 1, 2, ... One can check
easily that {xn}∞1 is minimal iff there exists a sequence of biorthogonal functionals {x∗

n}∞1 ⊂ X∗,
i.e. so that x∗

n(xm) = δn,m, n, m = 1, 2, ... (Kronecker’s delta). Note that the sequence {x∗
n} is

uniquely determined iff {xn}∞1 is complete in X, i.e. [xn]∞1 = X. Next, we say that {xn}∞1 is
C-bounded if supn ‖xn‖ ‖x∗

n‖ ≤ C for some sequence {x∗
n}∞1 of biorthogonal functionals. This

is clearly equivalent to the following condition: infm dist (xm/ ‖xm‖ , [xn]n6=m) > C−1. A
sequence {xn}∞1 is called uniformly minimal if it is C-bounded for some C.

A complete minimal sequence {xn}∞1 in X is called M-basis if the set {x∗
n}∞1 is total in X∗.

Now, {xn}∞1 is said to be M-basic sequence if it is M-basis in the space [xn]∞1 . An M-basic
sequence {xn}∞1 is called strong if ([x∗

n]n∈A)> ∩ [xn] = [xn]n/∈A for every subset A of N; we also
mention a nice equivalent condition [2]: [xn]n∈A∩ [xn]n∈B = [xn]n∈A∩B for any subsets A and
B of N. It was recently shown that every separable Banach space has a uniformly minimal
strong M-basis [5].

A sequence {xn}∞1 in X is called basis with brackets if there exists an increasing sequence
{rm}∞1 of positive integers such that, setting r0 = 0, we have

x =
∞∑

m=0

rm+1∑

n=rm+1

x∗
n(x)xn for each x ∈ X .

Next, {xn}∞1 is said to be basic with brackets sequence if it is a basis with brackets of the
space [xn]∞1 . Evidently, every basic with brackets sequence is strong.
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The concept of basis with brackets in a space X is closely connected with the concept of
finite-dimensional decomposition (F.D.D.) of X. The sequence {Xn}∞1 of finite-dimensional
subspaces of X is called a F.D.D. of X (we write X = X1 ⊕ X2 ⊕ ...) if, for each x ∈
X, there exist a unique sequence {xn ∈ Xn}∞1 so that x =

∑∞
n=1 xn. In this case linear

projections Pm on X defined by the rule Pm (
∑∞

n=1 xn) =
∑m

n=1 xn are bounded and, moreover,
supm ‖Pm‖ < ∞. Therefore every basis with brackets {xn}∞1 in X determines a F.D.D.
X = [xn]r1

n=r0+1 ⊕ [xn]r2

n=r1+1 ⊕ ... Conversely, given a F.D.D. X = X1 ⊕ X2 ⊕ ... and bases
{xn}rm+1

n=rm+1 of Xm for each m, the sequence {xn}∞1 is clearly a basis with brackets of X.

2 Block sequences of bases with brackets

Given a sequence {xn}∞1 in a Banach space X and an increasing sequence {qj}∞1 of positive
integers, we call a block sequence of {xn}∞1 any sequence {yj}∞1 of non-zero vectors with
yj ∈ [xn]

qj+1

n=qj+1 , j = 1, 2, ... It is easy to show that every block sequence of a basic sequence,
of an M-basic sequence, of a minimal sequence is a basic sequence, an M-basic sequence, a
minimal sequence respectively again. Well, what about basic with brackets sequences and
strong M-basic sequences?

Definition 2.1 A strong M-basic sequence is called block strong if every block sequence of it
is strong.

The selection problem is the following question due to A.Plans and A.Reyes: is every
strong M-basic sequence block strong? P.Terenzi [4] has constructed a Banach space where
the problem has negative answer. The strong M-basic sequence of his example is, moreover,
uniformly minimal. Recently, the selection problem has been solved in negative in Hilbert
space [1]. We solve the problem for all Banach spaces. Moreover, our strong M-basic sequence
is, in fact, a basic with brackets sequence and it can be made uniformly minimal. The example
seems to be more simple than the methods of [4] and [1].

Theorem 2.2 Let {en}∞1 be a basis of a Banach space X such that ‖en‖ = 1, n = 1, 2, ...
and let {αn}∞1 , {βn}∞1 and {γn}∞1 be sequences of positive real numbers. By definition, put for
each n = 1, 2, ...

x3n−2 = αne3n−2 − γne3n−1,
x3n−1 = γne3n−1,
x3n = γne3n−1 + βne3n.

Then {xn}∞1 is a basis with brackets in X.
Suppose the series

∑ |αn|,
∑ |βn| and

∑ |γn|−1 converge; then the sequence {yn}∞1 defined
by

y2j−1 = x3j−3 + x3j−2,
y2j = x3j−1

(we assume x0 = 0), is not strong.

ProofProof. Since [x3n−2, x3n−1, x3n] = [e3n−2, e3n−1, e3n] for each n, we see that {xn}∞1 is
a basis with brackets of X.

Now let us prove that the sequence {yn}∞1 is not strong. We define

y = α1e1 +
∞∑

n=2

(βn−1e3n−3 + αne3n−2) .
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It is sufficient to check that the following conditions are satisfied:
1) y ∈ [yj]

∞
1 ;

2) y ∈
(
[y∗

2j]
∞
1

)>
, where y∗

j ∈ X∗, j = 1, 2, ... are some biorthogonal functionals for {yj};
3) y /∈ [y2j−1]

∞
1 .

First, we shall check 1). Pick any functional x∗ ∈ X∗ such that x∗(yn) = 0, n = 1, 2, ... ; it
is sufficient to prove that x∗(y) = 0. Since y2j = γje3j−1, we have

x∗(e3j−1) = 0, j = 1, 2, ... (1)

Then it follows from the representation

y1 = α1e1 − γ1e2 (2)

that
x∗(α1e1) = 0. (3)

Further, we can write

y2j−1 = γj−1e3j−4 + βj−1e3j−3 + αje3j−2 − γje3j−1, j = 2, 3, ... (4)

Then, by our assumptions and by (1), we have

0 = x∗(y2j−1) = x∗(βj−1e3j−3 + αje3j−2).

It now follows from the definition of y and from (3) that x∗(y) = 0.
Now, we check 2). Clearly we can choose biorthogonal functionals y∗

n so that y∗
2j =

x∗
3j−1, j = 1, 2, ... Since y =

∑∞
n=1(αne3n−2 + βne3n) =

∑∞
n=1(x3n−2 + x3n), we obtain for

each j = 1, 2, ...

y∗
2j(y) =

∞∑

n=1

x∗
3j−1(x3n−2 + x3n) = 0 ,

so 2) is proved.
It remains to prove 3). Put

x∗ =
1

α1
e∗1 +

∞∑

n=2

(
1

γn−1
e∗3n−4 + αne∗3n−3 − βn−1e

∗
3n−2

)
,

where e∗n are the biorthogonal functionals for the basis {en} (the vector x∗ is well defined
because supn ‖e∗n‖ < ∞ and because of the definition of αn, βn and γn). Obviously, x∗(y) = 1.
But it follows from (2) and (4) that x∗(y2j−1) = 0, j = 1, 2, ... This shows that y /∈ [y2j−1]

∞
1 .

The proof is complete. End Proof

Since every Banach space contains a basic sequence, Theorem 2.2 shows that every Banach
space has a basic with brackets sequence which is not block strong. Now this will be improved
in the following way. We shall see that if a Banach space has a basis with brackets then it has
a basis with brackets which is uniformly minimal but not block strong.

Theorem 2.3 Every Banach space with a F.D.D. has a basis with brackets which is uniformly
minimal but not block strong.
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To prove this, two lemmas are required.

Lemma 2.4 Let X be a finite-dimensional Banach space; let Z be a subspace in X of codi-
mension N and let {zn} be a complete C-bounded minimal system in Z. Then {zn} can be
extended to a complete (

√
N + 1)C-bounded minimal system in X.

ProofProof. By the M.Kadets-Snobar theorem, there exists in X∗ a linear projection P
onto Z⊥ so that ‖P‖ ≤

√
N . Then (I−P )∗ is a projection in X onto Z. Let {yn, y

∗
n} ⊂ X×X∗

be an Auerbach basis (i.e. complete 1-bounded minimal system) of the space ker(I − P )∗. It
now easily follows that the minimal system {zn} ∪ {yn} with biorthogonal functionals {(I −
P )z∗n} ∪ {Py∗

n} satisfies the conditions of the lemma. End Proof

Lemma 2.5 Let {gn}∞1 be a C-bounded minimal sequence and let {xn}N
1 be a C ′-bounded

minimal system such that [xn]N1 = [gn]N1 and x∗e[gn]∞
N+1

= 0, n = 1, ..., N . Then for each

integer K ≥ N(C ′ + 1), there exists a system {x̃n}K
1 which satisfies the following conditions:

1) [x̃n]K1 = [gn]K1 ;
2) {xn}N

1 is a block sequence of {x̃n}K
1 ;

3) {x̃n}K
1 is a (

√
N + 1)6C-bounded minimal system.

ProofProof. We can (and do) assume that ‖gn‖ = ‖xn‖ = 1, n = 1, 2, ... Pick an integer
M ≥ 1 such that K = NM + N ′ with 0 ≤ N ′ < N. Then

M =
K − N ′

N
>

K

N
− 1 ≥ C ′ = sup

n
‖x∗

n‖ , (5)

where x∗
n are biorthogonal functionals for xn.

We are ready to define first NM vectors of a required system. They will be double-indexed,
n = 1, ..., N and j = 1, ..., M :

x̃nj = xn − 1

M




N+nM∑

i=N+(n−1)M+1

gi


+ gN+(n−1)M+j ,

x̃∗
nj =

1

M
x∗

n + g∗
N+(n−1)M+j .

So, the system {x̃n, x̃∗
n}NM

n=1 := {{x̃nj, x̃
∗
nj}j}n is defined. It is clear that:

1′) [x̃n]NM
1 is a subspace in [gn]

K
1 of codimension N ′;

2′) {xn}N
1 is a block sequence of {x̃n}NM

n=1 : indeed, xn = 1
M

∑M
j=1 x̃nj;

3′) {x̃n}NM
n=1 is 6C-bounded: it follows from the definition of {xn, x∗

n} and from (5) that

‖x̃nj‖ ≤ 3 and
∥∥∥x̃∗

nj

∥∥∥ ≤ 1 + C ≤ 2C.

To conclude the proof, it remains to apply Lemma 2.4 to the system {zn} := {x̃n}NM
n=1 in

the space [gn]
K
1 : we obtain its extension to a (

√
N ′ +1)6C-bounded system {x̃n}K

n=1 satisfying
1). Finally, it follows from 2′) that 2) is also true. End Proof

Proof of Theorem 2.3. First note that the sequence {xn} in Theorem 2.2 satisfies the
following condition. Suppose that {αn}, {βn}and {γn} are fixed. Then there exists a function
F (j, D) (where D = supn ‖e∗n‖) increasing on D and such that

sup {‖xn‖ ‖x∗
n‖ : n = 3j − 2, 3j − 1, 3j} ≤ F (j, D), j = 1, 2, ...
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Now let X be a space with a F.D.D.: X = X1 ⊕ X2 ⊕ ... It can be assumed that dim Xj ≥
3 (F (j, D) + 1), where D is the decomposition constant of X. Put q1 = 0, qj+1 = qj + dim X

j, j = 1, 2, ... Then
qj+1 − qj ≥ 3 (F (j, D) + 1) (6)

Let {gn}qj+1

qj+1 be an Auerbach basis of Xj. Let us define a sequence {en}∞1 with biorthogonal
functionals {e∗n}∞1 : e3j−k = gqj+3−k, e∗3j−k = g∗

qj+3−k, k = 0, 1, 2, j = 1, 2, ... Notice that
{en}∞1 is basic sequence in X with sup ‖e∗n‖ ≤ D; so the system {xn}∞1 of the Theorem 2.2 is
well defined. The following is true for it:

[xn]3j
3j−2 = [gn]

qj+3
qj+1 . (7)

Apply Lemma 2.5 to the D-bounded system {gn}qj+1

qj+1 and to F (j, D)-bounded system {xn}3j
3j−2

with N = 3 and with K = qj+1 − qj (the conditions in Lemma are satisfied by (6) and (7)).
We obtain a system {x̃n}qj+1

qj+1 such that:

1) [x̃n]
qj+1

qj+1 = [gn]
qj+1

qj+1 = Xj;

2) {xn}3j
3j−2 is a block sequence of {x̃n}qj+1

qj+1;

3) {x̃n}qj+1

qj+1 is (
√

3 + 1)6D-bounded.
Thus, {x̃n}∞1 is a basis with brackets which is uniformly bounded and {xn}∞1 is its block
sequence. By definition, {xn}∞1 is not block strong; so {x̃n}∞1 is not, too. End Proof

References

[1] J.A.Erdos, M.S.Lambrou and N.K.Spanoudakis, Block strong M-bases and spectral
synthesis, J. London Math. Soc. (to appear).

[2] A.Plans and A.Reyes, On the geometry of sequences in Banach spaces, Arch. Math.
(Basel) 40 (1983), 452-458.

[3] I. Singer, Bases in Banach spaces II, Springer, 1981.

[4] P.Terenzi, Block sequences of strong M-bases in Banach spaces, Collectanea Math.
(Barcelona) 35 (1984), 93-114.

[5] P.Terenzi, Every separable Banach space has a bounded strong norming biorthogonal
sequence which is also a Steinitz basis, Studia Math. 111 (1994), 207-222.

Dept. of Mechanics & Mathematics,
Kharkov State University,
4 Svobody Square, Kharkov, 310077,
Ukraine.

5


