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Abstract. We find a natural class of transformations (ªflattened perturbationsº) of a
norming M-basis in a Banach space X, which give a strong norming M-basis in X. This
simplifies and generalizes the positive answer to the ªstrong M-basis problemº solved by
P. Terenzi. We also show that in general one cannot achieve uniformly minimality
applying standard transformations to a given norming M-basis, despite of the existence
in X a uniformly minimal strong M-bases.

1. Introduction. Does every separable Banach space X have a strong M-basis? This
problem remained open for a long time (see [6], Problem 8.1) and was solved in the positive
by P. Terenzi ([8], [9]). He proved that every complete norming biorthogonal system has a
block perturbation which is a strong complete norming biorthogonal system (a biorthogonal
system �zn; z�n�n ^ 1 is a block perturbation of a biorthogonal system �xn; x�n�n ^ 1 if for every
m ^ 1

�zn�n2I�m� � �xn�n2I�m� and �z�n�n2I�m� � �x�n�n2I�m�;�1�

where I�m�, m � 1; 2; . . ., are some successive intervals of positive integers).
In Section 3 the way of constructing strong block perturbations is essentially simplified

and slightly generalized. For a given complete norming biorthogonal system we find a certain
class of block perturbations (so-called ªflattened perturbationsº) which are strong norming
complete biorthogonal systems. Therefore, we demonstrate a new construction of strong
M-bases in every separable Banach space. The presentation of this part is self-contained.

The second part of the paper is concerned with questions of uniform minimality. A
biorthogonal system �zn; z�n�n ^ 1 is called a pile perturbation of a biorthogonal system
�xn; x�n�n ^ 1 if (1) holds for m � 1; 2; . . ., where I�m� are some intervals of integers with the
left bounds � 1 and the right bounds ! 1 as m! 1 . The notions of block and pile
perturbations can be considered for minimal sequences as well: �zn�n ^ 1 is called a block
(resp. pile) perturbation of �xn�n ^ 1 if we have

�zn�n2I�m� � �xn�n2I�m��2�
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instead of (1) in the corresponding definitions. Clearly, each block perturbation is
a pile perturbation. It was a long standing open problem in Banach space theory whether
every separable Banach space X has a uniformly minimal M-basis. R. Ovsepian and
A. PelczynÂ ski solved it in the positive ([3], see also [4]). Later P. Terenzi constructed in
every X a strong uniformly minimal M-basis ([8], see [10] for further improvements). In
view of the results of Section 3.2, these observations suggest the following question: can
one achieve uniform minimality in constructions of strong block (or, at least, pile)
perturbations?

The answer is in general negative. In Section 4 we construct a complete norming
biorthogonal system �xn; x�n�n ^ 1 in l2 without uniformly minimal pile perturbations. It
follows that the norming M-basis �xn�n ^ 1 has no uniformly mininal block perturbations.
The system �xn; x�n�n ^ 1 has even a more pathological structure, to be established in
Theorem 4.2.

I am grateful to V. Kadets for the guidance, and for P. Terenzi for his hospitality during my
visit to Milan.

2. Standard definitions. Usual preliminaries can be found in [1] and [6]. Nevertheless we
recall some definitions. A system �xn; x�n�n ^ 1 � X �X� is called biorthogonal if
x�n�xm� � dn;m for every n;m (Kronecker�s delta). Suppose a complete sequence �xn�n ^ 1 is
minimal, i.e. xn 2j �xm�m�j n for any n. Then there exists a unique sequence of biorthogonal
functionals �x�n�n ^ 1 � X�, i.e. such that �xn; x�n�n ^ 1 is a biorthogonal system. A sequence
�x�n�n ^ 1 � X� is called total if for every x 2 X there is an n so that x�n�x� �j 0. Further,
�x�n�n ^ 1 is called norming if there is a constant c > 0 such that for every x 2 X there is an
x� 2 �x�n�n ^ 1 with jx��x�j ^ ckx�kkxk. Trivially every norming sequence is total. We will call a
biorthogonal system itself �xn; x�n�n ^ 1 complete if the sequence �xn�n ^ 1 is complete, and
total (resp. norming) if the sequence �x�n�n ^ 1 is total (resp. norming).

A complete minimal system �xn�n ^ 1 is called an M-basis (resp. norming M-basis) if its
sequence of biorthogonal functionals is total (resp. norming). A complete total biorthogonal
system �xn; x�n�n ^ 1 (or simply an M-basis �xn�n ^ 1) is called strong if x 2 �x�n�x�xn�n ^ 1 for
every x 2 X. There is an intrinsic characterization of strongness, due to A. Plans and A.
Reyes [5]: an M-basis �xn�n ^ 1 is strong iff �xn�n2A \ �xn�n2B � �xn�n2A\B for every subsets of
indices A and B.

We say that a system �xn; x�n�n ^ 1 � X �X� (not necessarily biorthogonal) is C-bounded if
kxnkkx�nk % C for every n. Clearly, a complete biorthogonal system �xn; x�n�n ^ 1 is C-bounded
for some C > 0 iff the sequence �xn�n ^ 1 is uniformly minimal, i.e.
inf n dist�xn=kxnk; �xm�m�j n� > 0 for every n. In this case we call the system �xn; x�n�n ^ 1 itself
uniformly minimal.

3. Strong block perturbations. A partition of N into finite sets �A�j��j ^ 1 is called a block
partition if for some successive intervals of integers �I�m��m ^ 1 the sets [

j2I�m�
A�j� are

successive intervals of integers, m � 1; 2; . . . .
We shall use the notion of block perturbations also for finite systems: �zn; z�n�n % m is a

block perturbation of �xn; x�n�n % m if �zn�n % m � �xn�n % m and �z�n�n % m � �x�n�n % m.
Let �xn; x�n�n ^ 1 be a biorthogonal system. Fix some partition of N into finite sets

�A�j��j ^ 1 and a sequence of numbers n�j� 2 A�j�.
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De f in i t ion 3 . 1 . A biorthogonal system �zn; z�n�n ^ 1 is called a flattened perturbation of
a biorthogonal system �xn; x�n�n ^ 1 with respect to �n�j�;A�j�� if for every j ^ 1

(i) �zn; z�n�n2A�j� is a block perturbatoin of �xn; x�n�n2A�j�;
(ii) kz�n ÿ x�n�j�k % ej=kxn�j�k for n 2 A�j�,

where ej are some positive scalars with
P

ej < 1 .

Trivially, if �A�j�� is a block partition, then every flattened perturbation with respect to
�n�j�;A�j�� is a block perturbation. Note that flattened perturbations are easy to construct:
one can apply an invertible linear operator acting in �x�n�n2A�j� which sends each x�n to some
vector close to x�n�j�.

Now we state the main result in this section.

Theorem 3.2. Let �xn; x�n�n ^ 1 be a complete norming biorthogonal system. Then there is a
block partition �A�j�� and numbers n�j� 2 A�j� so that each flattened perturbation of
�xn; x�n�n ^ 1 with respect to �n�j�;A�j�� is a strong complete biorthogonal system.

We will use the following two known results, due to P. Terenzi. Since their proofs are
scattered among different papers, and for the sake of completeness, we prove these results
below.

Lemma 3.3. Let �xn; x�n�n ^ 1 be a complete biorthogonal system in a Banach space X. Then
there is a sequence of positive integers r�1� < r�2� < . . . (which we call representing indices) so
that for every x 2 X

x � lim
m

� Pr�m�
n�1

x�n�x�xn � vm

�
for some vectors vm 2 �xn�r�m�1�

n�r�m��1 depending on x.

Lemma 3.4. If �xn; x�n�n ^ 1 is a complete norming biorthogonal system in X, then
representing indices can be chosen with the following property. Suppose for some x 2 X there
is a sequence of positive integers m1 < m2 < . . . so that

the series
P1
k�1

Pr�mk�1�

n�r�mk��1
x�n�x�xn converges:

Then setting r�m0� � 0 we have

x � P1
k�0

Pr�mk�1�

n�r�mk��1
x�n�x�xn:�3�

In the sequel, the relation x �e y between two vectors x and y means that kxÿ yk % e. We
also assume for convenience that

P
n2;

yn � 0 for every vectors yn.

P roof o f Le mm a 3 . 3 . We proceed by induction. Set r�1� � 1 and assume that
�r�n��n % m is constructed for some m ^ 1. Then, by a simple compactness argument (hint: a
finite net) there is a number p�m� 1� > r�m� large enough so that for every z 2 �xn�n % r�m�
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with kzk % 2� P
n % r�m�

kx�nkkxnk, we have

dist �z; �xn�p�m�1�
n�r�m��1� �

1=m
dist�z; �xn�1n�r�m��1�:�4�

Now set r�m� 1� :� p�m� 1�.
Let us check that �r�n�� is, indeed, a sequence of representing indices. Let x 2 B�X� and

e 2 �0; 1�. If a number m is sufficiently large, then 1=m % e and there is an bx 2 �xn�n % r�m�
with bx �e x. Then (4) holds for z :� bxÿ P

n % r�m�
x�n�x�xn. But z �e xÿ P

n % r�m�
x�n�x�xn �: x0;

hence dist�x0; �xn�p�m�1�
n�r�m��1� �

3e
dist�x0; �xn�1n�r�m��1� � 0: Then x0 is within a distance 3e from

�xn�p�m�1�
n�r�m��1 � �xn�r�m�1�

n�r�m��1. This completes the proof. h

P roof o f Le m ma 3. 4 . Assume �r�n��n % m is constructed for some m ^ 0. As in the
proof of Lemma 3.3, we find a number p�m� 1� > r�m� so that (4) holds for every
z 2 �xn�n % r�m� with kzk � 1. Recall that the biorthogonal system �xn; x�n�n ^ 1 is �2c�-norming
for some c > 0. That is, given a v 2 X, we have x��v� ^ 2ckvk for some x� 2 �x�n�n ^ 1 with
kx�k � 1. The simple compactness argument provides a number r�m� 1� > p�m� 1� such
that we have the following property:

(P) If v 2 �xn�n % p�m�1�, then x��v� ^ ckvk for some x� 2 �x�n�n % r�m�1� with kx�k � 1.

Then �r�n�� constructed in this way is, indeed, a sequence of representing indices. Let us
verify that the conclusion of Lemma 3.4 holds. Substracting the convergent series, we can
assume that for every k ^ 1

x�n�x� � 0 whenever r�mk� � 1 % n % r�mk � 1�:�5�
We can also assume that x 2 B�X�. Let e > 0; by the proof of Lemma 3.3 we have for any
sufficiently large integer k

x �e P
n % r�mk�

x�n�x�xn � vmk with vmk 2 �xn�p�mk�1�
n�r�mk��1:

Therefore, to finish the proof it is enough to show that lim
k

vmk � 0.

Using (5), we get vmk �
e

xÿ P
n % r�mk�1�

x�n�x�xn. Therefore x��vmk� �
e

0 for any

x� 2 �x�n�n % r�mk�1� with kx�k � 1. On the other hand, by the property (P), we have
x��vmk� ^ ckvmkk for some x� 2 �x�n�n % r�mk�1� with kx�k � 1. These estimates yield
ckvmkk % e. This completes the proof. h

P roof o f The or e m 3 . 2 . Let �r�m�� be representing indices of �xn; x�n�n ^ 1. We
construct the block partition �A�j�� and numbers n�j� 2 A�j� by induction. At each successive
step, we find a successive interval of integers ending at some representing index r�m�, and
this interval will be the new block of sets A�j�. Suppose �n�j�;A�j��j % j0 is constructed and let
r�m� be the last element of the interval [

j % j0
A�j�. We call such r�m� a block bound.

For r�m� � 1 % j % r�m� 1�, let dj � m� jÿ r�m�. Let E�j� be the set consisting of fjg
plus the successive interval between representing indices:

E�j� � fjg [ fr�dj� � 1; . . . ; r�dj � 1�g:
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We see that the sets E�j� are disjoint and their union is an interval beginning at r�m� � 1.
These E�j� will form the new block of sets A�j�. More precisely, we define

A�j0 � jÿ r�m�� � E�j� and n�j0 � jÿ r�m�� � j�6�
for r�m� � 1 % j % r�m� 1�. This completes the construction.

Observe that the sequence fn�1�; n�2�; . . .g is well defined by (6) and is exactly the union
of the intervals fr�m� � 1; . . . ; r�m� 1�g, where r�m� are the block bounds. Let j�n� be the
(one-to-one) function from this set to N which maps n�j� to j.

Now we verify the conclusion of Theorem 3.2. Let �zn; z�n�n ^ 1 be any flattened
perturbation of �xn; x�n�n ^ 1 with respect to �n�j�;A�j��, and let

P
en be a convergent series of

positive numbers. Pick any x 2 S�X�. We are to show that x 2 �z�n�x�zn�n ^ 1. There are two
possibilities:

(A) There exists a sequence of block bounds r�m1� < r�m2� < . . . such that for every
k ^ 1

kx�n�x�xnk % ej�n�

for r�mk� � 1 % n % r�mk � 1�;
(B) For every sufficiently large block bound r�m� there is a n0 � n0�m� with

r�m� � 1 % n0 % r�m� 1� such that

kx�n0
�x�xn0k > ej�n0� and kx�n�x�xnk % ej�n��7�

for n0 % n % r�m� 1�.
If (A) is the case, then the convergence of the series

P1
k�1

Pr�mk�1�

n�r�mk��1
ej�n� %

P1
j�1

ej makes possible

to apply Lemma 3.4. We derive from (3) that x 2 �z�n�x�zn�n ^ 1, since �zn; z�n�r�mk�1�
n�r�mk��1 is a

block perturbation of �xn; x�n�r�mk�1�
n�r�mk��1. This completes the proof in this case.

If (B) is the case, then another argument works. Consider the set W � fn 2 N : z�n�x� � 0g.
It is enough to show that x 2 �zn�n2NnW. Fix an e > 0 and a sufficiently large block bound
r�m�; let n0 be an index guaranteed by (B).

Claim: E�n0�� � N nW.

Indeed, it follows from (6) that E�n0� � A�j�n0��. If the Claim were not true, then
z�n�x� � 0 for some n 2 A�j�n0��. Then by the definition of a flattened perturbation we would
have jx�n0

�x�j % ej�n0�=kxn0k, which contradicts to (7).
By Lemma 3.3, there is a vector v 2 �xn�n2E�n0� such that setting

G � f1; . . . ; r�m�g [
�
[n0ÿ1

j�r�m��1
E�j�

�
we have

x �e Pr�dn0 �

n�1
x�n�x�xn � v � P

n2G

x�n�x�xn �
ÿ
x�n0
�x�xn0 � v

�� Pr�m�1�

n�n0�1
x�n�x�xn:

The first summand belongs to �zn�n2NnW. Indeed, �xn; x�n�n2G is a block perturbation of
�zn; z�n�n2G ; thus

P
n2G

x�n�x�xn �
P
n2G

z�n�x�zn 2 �zn�n2NnW. The second summand belongs to

�xn�n2E�n0� � �zn�n2E�n0� � �zn�n2NnW by the Claim. Due to (7), the third summand has the

norm less than
P1

n�n0�1
ej�n�. This quantity is less than e if m and, therefore, n0 � n0�m�, were
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chosen sufficiently large: this follows from Definition 3.1.

Thus we have shown that dist �x; �xn�n2NnW� < 2e. This completes the proof. h

4. Uniformly minimal pile perturbations. We shall find a biorthogonal system �xn; x�n�n ^ 1
in l2 which has no uniformly minimal pile perturbations. This will follow from a more general
result.

De f in i t ion 4 . 1 . We say that a biorthogonal system �zn; z�n�n ^ 1 is spanned by a
biorthogonal system �xn; x�n�n ^ 1 if

�zn�n ^ 1 � span�xn�n ^ 1 and �z�n�n ^ 1 � span�x�n�n ^ 1:�8�
If (8) holds, then to every positive integer m ^ 1 we can assign the minimal number q�m�

such that

�zn�n % m � �xn�n % q�m� and �z�n�n % m � �x�n�n % q�m�:

We call �q�m��m ^ 1 the spanning indices. Obviously, q�m� ^ m for every m ^ 1. Clearly,
�zn; z�n�n ^ 1 is a pile perturbation of �xn; x�n�n ^ 1 iff the equality q�m� � m holds for infintely
many positive integers m.

The main result in this section states that there are complete norming biorthogonal
systems in l2 such that uniformly minimal systems spanned by them must have very large
spanning indices.

Theorem 4.2. Given a sequence of positive numbers �lm�m ^ 1, there is a complete
biorthogonal system �xn; x�n�n ^ 1 in l2 with the following property. If �q�m�� are the spanning
indices of a uniformly minimal system spanned by �xn; x�n�n ^ 1, then

lim
m

q�m�=lm � 1 :

Corollary 4.3. There exists a complete norming biorthogonal system �xn; x�n�n ^ 1 in l2
without uniformly minimal pile and block perturbations. Moreover, the norming M-basis
�xn�n ^ 1 has no uniformly minimal block perturbations.

P roof. The first statement follows from Theorem 4.2 if we set lm � m, m � 1; 2; . . . .
Let �zn�n ^ 1 be arbitrary block perturbation of �xn�n ^ 1. Let I�m� be successive intervals

of integers so that (2) holds for every m. Then

�x�n�n2I�m� �
ÿ�xn�n2I�m0�;m0�jm

�? � ÿ�zn�n2I�m0�;m0�j m
�? � �z�n�n2I�m�:

Hence �xn; x�n�n ^ 1 is a block perturbation of �zn; z�n�n ^ 1. Then it follows from the first part
that �xn�n ^ 1 is not uniformly minimal. h

Re ma r ks. 1. Of course, �xn�n ^ 1 has a uniformly minimal pile perturbation (apply the
standard biorthogonalization procedure in l2).

2. It will follow from the proof that these results hold not only in l2, but also in every
reflexive Banach space with unconditional basis.

We proceed now to the proof of Theorem 4.2.
Let �en�n ^ 1 denote the canonical basis in l2. Let p be some permutation on N. We shall

specify p later, it will depend only on the sequence �ln�n ^ 1. Let �en�n ^ 1 be a sequence of
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positive numbers such thatP
i>n

e2
i % 1

8 :�9�

The following proposition can be derived easily from the standard construction of an M-
basis in a separable Banach space (see [1], Proposition 1.f.3).

Proposition 4.4. There is a biorthogonal system �xn; x�n�n ^ 1 in l2 and a sequence �ben�n ^ 1 in
l2 such that:

(i) �xn�n % m � �ben�n % m and �x�n�n % m � �ep�n��n % m for every m ^ 1;

(ii) ben �en
en for every n ^ 1.

Apply Proposition 4.4 and define a linear operator T in l2 by

Tben � en; n ^ 1:

It is not hard to check that (9) yields that T is well defined and is an isomorphism:

kTk % 2; kTÿ1k % 2:�10�
In particular, �ben�n ^ 1 is a basis in l2. Then �xn�n ^ 1 and �x�n�n ^ 1 are complete sequences.
Hence �xn; x�n�n ^ 1 is a complete norming biorthogonal system.

It will not be enough to know that T is just an isomorphism. The following lemma shows
that T is asymptotically close to the identity.

Lemma 4.5. Let �zn�n ^ 1 be a normalized M-basis in l2. Then

lim
n
�Tzn ÿ zn� � 0:

Pr oof. It suffices to show that lim
n
kzn ÿ Tÿ1znk � 0: Let e > 0. Let n0 � n0�e� be a

positive integer which we specify below. For every n ^ 1, write the expansions zn �
P

i
an;iei,

where �an;i� are some scalars. By the triangle inequality, Hölder�s inequality, and our choise
of vectors bei, we have for any k ^ 1

kzn ÿ Tÿ1znk �



 P

i ^ 1
an;i�ei ÿ bei�





%
P

i % k
jan;ij �

�P
i>k
jan;ij2

�1=2�P
i>k
kei ÿ beik2

�1=2

%
P

i % k
jan;ij �

�P
i>k

e2
i

�1=2
�11�

Claim: lim
n

an;i � 0 for every i ^ 1.

Indeed, since �zn�n ^ 1 is a normalized M-basis in a reflexive space, the sequence �zn�n ^ 1
tends weakly to zero. Then for every i ^ 1

0 � lim
n
hei; zni � lim

n
an;i:

This proves the claim.
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Now we describe how to pick n0. First choose k � k�e� so that the second summand in (11)
is less then e=2. By the claim, we can pick n0 � n0�k; e� so that the first summand in (11) is
less then e=2 whenever n > n0. Thus kzn ÿ Tÿ1znk < e=2� e=2 � e for every n > n0. h

We proceed to verification of the conclusion of Theorem 4.2. Let �zn; z�n�n ^ 1 be a system
spanned by �xn; x�n�n ^ 1, and such that

kznk � 1; kz�nk % M for n ^ 1:�12�
Assume that the conclusion of Theorem 4.2 is false. Then there are a positive (integer)
constant c and increasing sequences of positive integers �p�m��m ^ 1 and �q�m��m ^ 1 such
that for every m ^ 1 we have:

r�m� :� q�p�m�� % clp�m��13�
and

�zn�n % p�m� � �xn�n % r�m� � �ben�n % r�m�;�14�
�z�n�n % p�m� � �x�n�n % r�m� � �ep�n��n % r�m�:�15�

For a positive integer k, set

W�k� � f1; 2; . . . ; kg \ fp�1�;p�2�; . . . ;p�k�g:
Note that if k is large enough, then W�k� is not empty.

For any integer m large enough, let Pm denote the orthogonal projection in l2 onto
�en�n2W�r�m��. Define a system �ym;n; y�m;n�n % p�m� by

ym;n � PmTzn; y�m;n � Pmz�n:

By (10) and (12), this system is �2M�-bounded. One can not assert that it is biorthogonal, but
this is not far from the truth.

De f in i t ion 4 . 6 . Let X be a Banach space and e > 0. A system �yn; y�n� � X �X� (finite
or infinite) is called e-roughly biorthogonal in X if, for every indices k and n, y�k�yn� �e dk;n.

Lemma 4.7. There are positive integers n0 and m0 such that, for every m > m0 , the system
�ym;n; y�m;n�p�m�n�n0�1 is a �1=4�-roughly biorthogonal system in l2.

P roof. Lemma 4.5 provides a number n0 such that

kTzn ÿ znk < 1
4M

for n > n0:�16�

Pick m0 so that W�r�m0�� is not empty and p�m0� > n0. Fix a positive integer m > m0 and
take any indices n and k with n0 � 1 % n; k % p�m�. By (14) and (15),

supp�z�k� \ supp�Tzn� � W�r�m��:
Then

y�m;k�ym;n� � hPmz�k;PmTzni � z�k�Tzn�:
Together with (16) and (12), this gives

jy�m;k�ym;n� ÿ dk;nj � jz�k�Tzn ÿ zn�j % kz�kk �
1

4M
%

1
4
:

The proof is complete. h
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Observe that supp�ym;n� � W�r�m�� and supp�y�m;n� � W�r�m�� for every m > m0 and
n % p�m�. Therefore, for every m > m0 we may consider the vectors ym;n and y�m;n, n % p�m�,
as elements of the space ljW�r�m��j2 .

Summarize what we have shown. There are positive integers n0 and m0 such
that, for every integer m > m0, there is a system of cardinality �p�m� ÿ n0� in ljW�r�m��j2
which is:

(i) �1=4�-roughly biorthogonal,
(ii) �2M�-bounded.

Now we establish that in this case jW�r�m��j can not be too large.

Lemma 4.8. Let e 2 �0; 1=2�. Let X be a k-dimensional Banach space. Suppose some system
�yn; y�n�n % p in X is e-roughly biorthogonal and M-bounded. Then

k ^ c1log p

for some constant c1 � c1�e;M� > 0.

P roof. We may regard X as Rk endowed with a norm k � k. Also, we may assume
kynk � 1 and ky�nk % M for all n. Then, for any non-equal indices k and n, one has

kyk ÿ ynk ^ �y�k�yk� ÿ y�k�yn��=ky�kk ^ �1ÿ 2e�=M �: d:

This shows that the open balls yn � �d=2�B�X�, n % p, are pairwise disjoint and are
contained in the ball �1� d=2�B�X�. By comparing the volumes in Rk, we get
p�d=2�k % �1� d=2�k. Hence k ^ �log �1� 2=d��ÿ1log p. This completes the proof. h

Applying Lemma 4.8 in our situation, we obtain that there is a constant c1 � c1�M� such
that, for every m > m0,

jW�r�m��j ^ c1log �p�m� ÿ n0�:
Combining with (13), we have for m > m0:

jW�clp�m��j ^ c1log �p�m� ÿ n0�
(clearly, we can assume that �lm�m ^ 1 is an increasing sequence of positive integers). Since
the sequence �p�m��m ^ 1 is increasing, we get

lim sup
n

jW�cln�j
log n

> 0:�17�

Now we show that there is a permutation p on N such that (17) fails for any constant c.

Lemma 4.9. Let f : N! R� be a non-decreasing function with lim
n

f �n� � 1 . Then there
is a permutation p on N with

lim
n

jW�cn�j
f �n� � 0

for every (positive integer) constant c.
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P roof. One can easily construct a non-decreasing ªontoº function f : N! N such that

(i) lim
n

f�n� � 1 ;

(ii) lim
n

f�n�=f �n� � 0;

(iii) f�n� % n and f�2n� % 2f�n� for every n ^ 1.

Then we define a function F : N! N:

F�n� � jfm : f�m� % ngj:
Note that, for every m ^ 1,

jfn : F�n� % mgj � f�m�:�18�
Let G be a subset of N such that for every m ^ 1

jG \ f1; . . . ;mgj % f�m�:�19�
Finally, define a permutation p as follows:

p�n� � F�n�; n 2j G

free�n�; n 2 G ;

�
where free�n� denotes the minimal positive integer k 2j fp�1�;p�2�; . . . ;p�nÿ 1�g. The
permutation p is well defined: indeed, the functions F�n� and free�n� are strictly increasing
and F�n� ^ n, free�n� % n for every n. We see that

W�m� � fn : F�n� % mg [ ffree�n� : n 2 G \ f1; . . . ;mgg:
By (18) and (19),

jW�m�j % 2f�m�:�20�
Let a positive integer k be so that 2k ^ c. By (20) and (iii), we have for every n ^ 1:

jW�cn�j % jW�2kn�j % 2f�2kn� % 2 � 2kf�n�:
Thus

lim
n

jW�cn�j
f �n� % 2k�1 lim

n

f�n�
f �n� � 0:

The proof is complete. h
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