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On constructions of strong and uniformly minimal M-bases in
Banach spaces

By

R. VERSHYNIN *)

Abstract. We find a natural class of transformations (“flattened perturbations”) of a
norming M-basis in a Banach space X, which give a strong norming M-basis in X. This
simplifies and generalizes the positive answer to the “strong M-basis problem” solved by
P. Terenzi. We also show that in general one cannot achieve uniformly minimality
applying standard transformations to a given norming M-basis, despite of the existence
in X a uniformly minimal strong M-bases.

1. Introduction. Does every separable Banach space X have a strong M-basis? This
problem remained open for a long time (see [6], Problem 8.1) and was solved in the positive
by P. Terenzi ([8], [9]). He proved that every complete norming biorthogonal system has a
block perturbation which is a strong complete norming biorthogonal system (a biorthogonal
system (z,,2);), = 18 a block perturbation of a biorthogonal system (x,,x}), =, if for every
m=1

(1) [Z"]nel(m) = [xn]nel(m) and [ZZ]nel(m) = [x;]nel(m)7

where I(m), m = 1,2, ..., are some successive intervals of positive integers).

In Section 3 the way of constructing strong block perturbations is essentially simplified
and slightly generalized. For a given complete norming biorthogonal system we find a certain
class of block perturbations (so-called “flattened perturbations) which are strong norming
complete biorthogonal systems. Therefore, we demonstrate a new construction of strong
M-bases in every separable Banach space. The presentation of this part is self-contained.

The second part of the paper is concerned with questions of uniform minimality. A
biorthogonal system (z,,z}), =, is called a pile perturbation of a biorthogonal system
(%n,x}), = if (1) holds for m = 1,2, ..., where I(m) are some intervals of integers with the
left bounds =1 and the right bounds — oo as m — oo. The notions of block and pile
perturbations can be considered for minimal sequences as well: (z,), = ; is called a block
(resp. pile) perturbation of (x,), - if we have

(2) [Z"]ngl(m) = [xn]nel(m)
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instead of (1) in the corresponding definitions. Clearly, each block perturbation is
a pile perturbation. It was a long standing open problem in Banach space theory whether
every separable Banach space X has a uniformly minimal M-basis. R. Ovsepian and
A. Pelczynski solved it in the positive ([3], see also [4]). Later P. Terenzi constructed in
every X a strong uniformly minimal M-basis ([8], see [10] for further improvements). In
view of the results of Section 3.2, these observations suggest the following question: can
one achieve uniform minimality in constructions of strong block (or, at least, pile)
perturbations?

The answer is in general negative. In Section 4 we construct a complete norming
biorthogonal system (x,,x}),=; in L without uniformly minimal pile perturbations. It
follows that the norming M-basis (x,), =, has no uniformly mininal block perturbations.
The system (x,,x),~,; has even a more pathological structure, to be established in
Theorem 4.2.

I am grateful to V. Kadets for the guidance, and for P. Terenzi for his hospitality during my
visit to Milan.

2. Standard definitions. Usual preliminaries can be found in [1] and [6]. Nevertheless we
recall some definitions. A system (x,,X)),=; C X x X* is called biorthogonal if
X (Xm) = Opm for every n,m (Kronecker’s delta). Suppose a complete sequence (x,), - is
minimal, i.e. x, € [Xn],, 4+, for any n. Then there exists a unique sequence of biorthogonal
functionals (x}), =, C X*, i.e. such that (x,,x}),~, is a biorthogonal system. A sequence
(x5),=1 C X* is called total if for every x € X there is an n so that x}(x) £ 0. Further,
(x%), =1 is called norming if there is a constant ¢ > 0 such that for every x € X there is an
x* € [x}], =1 with |x*(x)| = c¢||x*||||x|. Trivially every norming sequence is total. We will call a
biorthogonal system itself (x,,x}),~; complete if the sequence (x,),~; is complete, and
total (resp. norming) if the sequence (x}), -, is total (resp. norming).

A complete minimal system (x,), ~ ; is called an M-basis (resp. norming M-basis) if its
sequence of biorthogonal functionals is total (resp. norming). A complete total biorthogonal
system (x,,x}), = (or simply an M-basis (x,), =) is called strong if x € [x}(x)x,], =, for
every x € X. There is an intrinsic characterization of strongness, due to A. Plans and A.
Reyes [5]: an M-basis (x,), = ; is strong iff [x,],.4 N [Xu],c5 = [Xn),canp fOr every subsets of
indices A and B.

We say that a system (x,,x};), = C X x X* (not necessarily biorthogonal) is C-bounded if
|lxn|l|lx:]| = C for every n. Clearly, a complete biorthogonal system (x,,,x}), = ; is C-bounded
for some C>0 iff the sequence (x,),~, Iis wuniformly minimal, i.e.
inf , dist(x, /||xn ], [Xm],,,) > O for every n. In this case we call the system (x,,x;,), = itself
uniformly minimal.

3. Strong block perturbations. A partition of N into finite sets (A(j)); =, is called a block
partition if for some successive intervals of integers (I(m)),, -, the sets U A(j) are
successive intervals of integers, m = 1,2,.... jel(m)

We shall use the notion of block perturbations also for finite systems: (z,,z), <,, IS @
block perturbation of (x,,x), <, if [2nl, < m = ¥nl, <, a0d (23], <0 = Kol < e

Let (x,,x}),~; be a biorthogonal system. Fix some partition of IN into finite sets
(A(j)); = and a sequence of numbers n(j) € A(j).



52 R. VERSHYNIN ARCH. MATH.

Definition 3.1. A biorthogonal system (z,,z},), = ; is called a flattened perturbation of
a biorthogonal system (x,,x}), = ; With respect to (n(j), A(j)) if for every j = 1

(1) (zn,2)neay 1s a block perturbatoin of (xy,X;,),c4():
(i) 12 — x| = &/l | for n € AG),
where ¢; are some positive scalars with > & < oo.

Trivially, if (A(j)) is a block partition, then every flattened perturbation with respect to
(n(j), A(j)) is a block perturbation. Note that flattened perturbations are easy to construct:
one can apply an invertible linear operator acting in [x};], AG) which sends each x}, to some
vector close to X

Now we state the main result in this section.

Theorem 3.2. Let (x,,x},), = | be a complete norming biorthogonal system. Then there is a
block partition (A(j)) and numbers n(j) € A(j) so that each flattened perturbation of
(%n, %), =1 with respect to (n(j), A(j)) is a strong complete biorthogonal system.

We will use the following two known results, due to P. Terenzi. Since their proofs are
scattered among different papers, and for the sake of completeness, we prove these results
below.

Lemma 3.3. Let (x,,x},), = ; be a complete biorthogonal system in a Banach space X. Then
there is a sequence of positive integers r(1) < r(2) < ... (which we call representing indices) so
that for every x € X

r(m)
x =lim ( > xi(x)x, + vm)

n=1

for some vectors vy, € [xn];(:mrw) 41 depending on x.

Lemma 34. If (x,,x}),~, is a complete norming biorthogonal system in X, then
representing indices can be chosen with the following property. Suppose for some x € X there
is a sequence of positive integers my < mp < ... so that

0o r(mg+1)

the series y_ Y. x:(x)x, converges.
k=1 n=r(my)+1

Then setting r(mp) = 0 we have
3) x=> 25, ()%

In the sequel, the relation x ~ y between two vectors x and y means that |lx —y|| = e We

also assume for convenience that > y, = 0 for every vectors y,.
nef

Proof of Lemma 3.3. We proceed by induction. Set r(1) =1 and assume that
(r(n)), < ,, is constructed for some m = 1. Then, by a simple compactness argument (hint: a
finite net) there is a number p(m + 1) > r(m) large enough so that for every z € [xu], = ()
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with [z =2+ 3 ||xi|l[lxall, we have

n=r(m)

. 1 1/m . .
) dist (2, [en 200 ) A dist(z, 6] 1)

Now set r(m+ 1) :== p(m +1).
Let us check that (r(n)) is, indeed, a sequence of representing indices. Let x € B(X) and
(0 1) If a number m is sufficiently large, then 1/m = & and there is an X € [x,], = ()
w1th X4 x. Then (4) holds for z:=X— Y  xi(x)x,. But z Ax— >oxi(x)x, = x;

i n =r(m) n=r(m)
hence dist(x/, [xn}gfj(:gﬂ) X dist(x’, [xa],Z, (1) = 0. Then x' is within a distance 3¢ from
[x n]p mH = n};(:"jni; .1~ This completes the proof. [

Proof of Lemma 3.4. Assume (r(n)), =, is constructed for some m = 0. As in the
proof of Lemma 3.3, we find a number p(m+1) > r(m) so that (4) holds for every
Z € [Xn), < () With [|z]| = 1. Recall that the biorthogonal system (x,, x;,), =  is (2c)-norming
for some ¢ > 0. That is, given a v € X, we have x*(v) = 2¢||v|| for some x* € [x}], = with
|lx*|| = 1. The simple compactness argument provides a number r(m + 1) > p(m + 1) such

that we have the following property:

(P) If v € [Xn,, < pims1)> then x*(v) = cf|v]| for some x* € [x;],, < (1) With [[x*]] = 1.

Then (r(n)) constructed in this way is, indeed, a sequence of representing indices. Let us
verify that the conclusion of Lemma 3.4 holds. Substracting the convergent series, we can
assume that for every k = 1

(5) x;(x) =0 whenever r(my)+1=n=r(mg+1).

We can also assume that x € B(X). Let ¢ > 0; by the proof of Lemma 3.3 we have for any
sufficiently large integer k

p(mi+1)

&
x~ 3 X (00X + Uy With v € [l 205

n = r(my)
Therefore, to finish the proof it is enough to show that li1];n U, = 0.

Using (5), we get vmkix— > x(x)x,. Therefore x (vmk)iO for any
n = r(me+1)

x* € [x}) with ||x*|| =1. On the other hand, by the property (P), we have

n = r(mg+1)
X*(Vm,) Z c||vm, || for some x* € [x;], < 1) With [x*[|=1. These estimates yield
c||vm, || = e. This completes the proof. [

Proof of Theorem 3.2. Let (r(m)) be representing indices of (x,,x}),=; We
construct the block partition (A(j)) and numbers n(j) € A(j) by induction. At each successive
step, we find a successive interval of integers ending at some representing index r(m), and
this interval will be the new block of sets A(j). Suppose (n(j), A(j)); < ;, is constructed and let

r(m) be the last element of the interval U A(j). We call such r(m) a block bound.
J=ho

For rim)+1=j=r(m+1), let dj=m+j—r(m). Let E(j) be the set consisting of {j}
plus the successive interval between representing indices:

EG) ={tuf{r(d)+1,...,r(d; +1)}.
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We see that the sets E(j) are disjoint and their union is an interval beginning at r(m) + 1.
These E(j) will form the new block of sets A(j). More precisely, we define

(6) Aljo +J —r(m)) = E(j) and n(jo +j —r(m)) = j
for r(m) +1 = j = r(m + 1). This completes the construction.

Observe that the sequence {n(1),n(2),...} is well defined by (6) and is exactly the union
of the intervals {r(m) +1,...,r(m+ 1)}, where r(m) are the block bounds. Let j(n) be the
(one-to-one) function from this set to N which maps n(j) to j.

Now we verify the conclusion of Theorem 3.2. Let (z4,%}),=; be any flattened
perturbation of (x,,x}), = ; with respect to (n(j), A(j)), and let > &, be a convergent series of
positive numbers. Pick any x € S(X). We are to show that x € [z} (x)z,], = ;. There are two
possibilities:

(A) There exists a sequence of block bounds r(m;) < r(my) < ... such that for every

k=1

[l ()l = )

for r(my) + 1 = n = r(my + 1);
(B) For every sufficiently large block bound r(m) there is a ng=ng(m) with
r(m)+1=ny = r(m+1) such that

() (125 (6 %g [| > €(ng) and. [, (¥)xul| = &j0n)

fornp=n=r(m+1). (
oo r(mg+1)
If (A) is the case, then the convergence of the series . > g Z &j makes possible
k=1 n=r(my)+1
to apply Lemma 3.4. We derive from (3) that x € [z}(x)z,], =, since (zn,z )
block perturbation of (x,,x ):fmrk(; ;A +1- This completes the proof in this case.
If (B) is the case, then another argument works. Consider the set 2 = {n € N : z;(x) = 0}.
It is enough to show that x € [z,],cn o- Fix an € > 0 and a sufficiently large block bound

r(m); let ny be an index guaranteed by (B).
Claim: E(ng)) C N\ Q.

Indeed, it follows from (6) that E(ng) = A(j(no)). If the Claim were not true, then
Z5(x) = 0 for some n € A(j(ny)). Then by the definition of a flattened perturbation we would
have |x;; (x)| = €j(u)/ [I%n, ||, Which contradicts to (7).

By Lemma 3.3, there is a vector v€ [x,]

(M)

n=r(my)+1 is a

neE(my) Such  that  setting

-1
r:{1,...,r(m)}u( "0 E(,')) we have
j=r(m)+1
. r(dny) r(m+1)
xR 3 (0% v =30 X (0% + (0, ()%, +v) + 3 X (0

n=1 nel’ n=ng+1
The first summand belongs to [zn]neN\Q Indeed, (x,,x}),cr is a block perturbation of
(20, 25 pers thus > xi(x)x, = Z 2,(X)2n € [2n],en@- The second summand belongs to

nel

nlne by = [ZnlneEmy) C [zn]neN\Q by the Claim. Due to (7), the third summand has the

o0
norm less than 3 &;,. This quantity is less than ¢ if m and, therefore, ng = no(m), were
n=ng+1
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chosen sufficiently large: this follows from Definition 3.1.
Thus we have shown that dist (x, [xs],cn o) < 2¢. This completes the proof. [

4. Uniformly minimal pile perturbations. We shall find a biorthogonal system (x,,x}), =
in [, which has no uniformly minimal pile perturbations. This will follow from a more general
result.

Definition 4.1. We say that a biorthogonal system (z,,z}),=; is spanned by a
biorthogonal system (x,,x},), = ; if

(8) (zn)p=1 Cspan(xy), = and (z,),=; Cspan(x,), = .

If (8) holds, then to every positive integer m = 1 we can assign the minimal number g(m)
such that

[Znln<m C Ponly=gomy and (23], < C Xl = gom-
We call (q(m)),, =, the spanning indices. Obviously, q(m) = m for every m = 1. Clearly,
(2n,2}), = 1 1s a pile perturbation of (x,,x}), ~ , iff the equality g(m) = m holds for infintely
many positive integers m.
The main result in this section states that there are complete norming biorthogonal
systems in /; such that uniformly minimal systems spanned by them must have very large
spanning indices.

Theorem 4.2. Given a sequence of positive numbers (i), there is a complete
biorthogonal system (x,,x}), =, in l, with the following property. If (q(m)) are the spanning
indices of a uniformly minimal system spanned by (x,,x},), =, then

lim g(m)/Am = oc.

Corollary 4.3. There exists a complete norming biorthogonal system (x,,x), =, in b
without uniformly minimal pile and block perturbations. Moreover, the norming M-basis
(%n), = 1 has no uniformly minimal block perturbations.

Proof. The first statement follows from Theorem 4.2 if we set A, =m, m=1,2,....
Let (z), = be arbitrary block perturbation of (x,), = ;. Let I(m) be successive intervals
of integers so that (2) holds for every m. Then

1

* L *
[xn}nel(m) = ([xn}nel(m/)‘m%m) = ([Z"}nel(m/),m’#m) = [Zn]nel(m)'

Hence (x,,x}), = is a block perturbation of (z,,z},), = ;- Then it follows from the first part
that (x,), = is not uniformly minimal. [

Remarks. 1. Of course, (x,), =, has a uniformly minimal pile perturbation (apply the
standard biorthogonalization procedure in /).

2. It will follow from the proof that these results hold not only in /, but also in every
reflexive Banach space with unconditional basis.

We proceed now to the proof of Theorem 4.2.
Let (e,), = ; denote the canonical basis in /,. Let 7 be some permutation on N. We shall
specify x later, it will depend only on the sequence (4,), = ;. Let (&), =, be a sequence of
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positive numbers such that

(9) S =t

i>n
The following proposition can be derived easily from the standard construction of an M-
basis in a separable Banach space (see [1], Proposition 1.£.3).

Proposition 4.4. There is a biorthogonal system (x,x},), =, in I, and a sequence (e,), = in
b, such that:

() (nly<m = [€nly = and [x], <y = [€am)]y < for every m = 1;
(ii) &, % e, for every n = 1.
Apply Proposition 4.4 and define a linear operator T in /, by
Te,=e,, n=l1.
It is not hard to check that (9) yields that T is well defined and is an isomorphism:
(10) ITh=2, T =2

In particular, (e,),~ is a basis in . Then (x,),~, and (x},), =, are complete sequences.
Hence (x,,x}), = is a complete norming biorthogonal system.

It will not be enough to know that 7 is just an isomorphism. The following lemma shows
that 7 is asymptotically close to the identity.

Lemma 4.5. Let (z,,),, ~ | be a normalized M-basis in I,. Then

linm (Tzy — z4) =0.

Proof. It suffices to show that lim ||z, — T~'z,|| = 0. Let & > 0. Let ny = ny(e) be a
n
positive integer which we specify below. For every n = 1, write the expansions z, = Y ape;,

1
where (a,;) are some scalars. By the triangle inequality, Holder’s inequality, and our choise
of vectors ¢;, we have for any k = 1

llzn — TﬁlZn” = Z an,i(ei - a)
i=z1
1/2 N1
= 3 lanil + (X laniP) (X lles —@ilP)
i=k i>k i>k

(11)

lIA

> faul+ (£6)"

i=k i>k
Claim: lim a,; = 0 for every i = 1.
n

Indeed, since (z,), = ; is a normalized M-basis in a reflexive space, the sequence (z,),, =,
tends weakly to zero. Then for every i = 1

0 = lim (e;, z,) = lim ay,;.

This proves the claim.
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Now we describe how to pick ny. First choose k = k(¢) so that the second summand in (11)
is less then ¢/2. By the claim, we can pick ny = ny(k, €) so that the first summand in (11) is
less then ¢/2 whenever n > ny. Thus ||z, — T 'z, < ¢/2 +¢/2 = ¢ for every n > ny. O

We proceed to verification of the conclusion of Theorem 4.2. Let (z,,z},), = ; be a system
spanned by (x,,x}), = ;, and such that
(12) lzall =1, |lzpl| =M for n=1.
Assume that the conclusion of Theorem 4.2 is false. Then there are a positive (integer)

constant ¢ and increasing sequences of positive integers (p(m)),, =, and (g(m)),, = such
that for every m = 1 we have:

(13) r(m) = q(p(m)) = cAp(m)

and

(14) [Zfl}n = p(m) - [xn}n =r(m) — [al]n =r(m)»
(15) [Z:Jngp(m) C [x:t}ngr(m) = [eﬂ(n)}ngr(m)'

For a positive integer k, set
Qk)={1,2,...,k} n{zx(1),n(2),...,n(k)}.
Note that if & is large enough, then (k) is not empty.
For any integer m large enough, let P, denote the orthogonal projection in /, onto
[en]neg(,(,n)). Define a system (Yn, Vi 0)n < p(m) by
Ymn = PmTZn: y;kn,n = mzz‘
By (10) and (12), this system is (2M)-bounded. One can not assert that it is biorthogonal, but
this is not far from the truth.

Definition 4.6. Let X be a Banach space and € > 0. A system (y,,y;,) C X x X" (finite
or infinite) is called e-roughly biorthogonal in X if, for every indices k and n, y; (y») ~ Okn-

Lemma 4.7. There are positive integers ny and my such that, for every m > my, the system
()’m,nv}’fn,n)ﬁglﬂ is a (1/4)-roughly biorthogonal system in I,.

Proof. Lemma 4.5 provides a number n such that
1
(16) ||Tzn - Zn” < m for n > nyg.

Pick my so that Q(r(myg)) is not empty and p(my) > ny. Fix a positive integer m > my and
take any indices n and k with ny +1 = n,k = p(m). By (14) and (15),
supp(z) Nsupp(7z,) C L(r(m)).
Then
)’fn,k(ym‘n) = (Pmzg, PmTzn) = 2;(T2n).
Together with (16) and (12), this gives
1 1

ik Oma) = Ol = |2il(T20 = 20)| S 5] - 337 S -

The proof is complete. [
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Observe that supp(ym,) C 2(r(m)) and supp(y;,,) C (r(m)) for every m > my and
n = p(m). Therefore, for every m > my we may consider the vectors y,,, and y}, ., n = p(m),
[Q(r(m))] '
as elements of the space [; .
Summarize what we have shown. There are positive integers ny and mg such
that, for every integer m > my, there is a system of cardinality (p(m)—ng) in l‘zg('(mm
which is:

(i) (1/4)-roughly biorthogonal,
(i) (2M)-bounded.

Now we establish that in this case |2(r(m))| can not be too large.

Lemma 4.8. Let ¢ € (0,1/2). Let X be a k-dimensional Banach space. Suppose some system
(Yns Yn)n = p in X is e-roughly biorthogonal and M-bounded. Then

k = cilogp
for some constant ¢y = c¢1(e, M) > 0.

Proof. We may regard X as R* endowed with a norm |- . Also, we may assume
|yl =1 and ||y%|| = M for all n. Then, for any non-equal indices k and n, one has

1Y = yall = ) = yen))/lIyill = (1 = 2¢)/M =: 0.

This shows that the open balls y, + (6/2)B(X), n = p, are pairwise disjoint and are
contained in the ball (1+0/2)B(X). By comparing the volumes in RX, we get
p(6/2)% = (1 +6/2)F. Hence k = (log (1 +2/8)) 'log p. This completes the proof. [

Applying Lemma 4.8 in our situation, we obtain that there is a constant ¢; = ¢;(M) such
that, for every m > my,

|Q(r(m))| = cilog (p(m) — no).
Combining with (13), we have for m > my:
|R2(cApmy)| Z c1log (p(m) — no)

(clearly, we can assume that (4,,),, =, is an increasing sequence of positive integers). Since
the sequence (p(m)),, = is increasing, we get

|2(chn)|

> 0.
logn

(17) lim sup

Now we show that there is a permutation 7 on N such that (17) fails for any constant c.

Lemma 4.9. Let f : N — R, be a non-decreasing function with lim f(n) = occ. Then there
is a permutation w on N with

. |R(cen)|
B )

for every (positive integer) constant c.

=0
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Proof. One can easily construct a non-decreasing “onto” function ¢ : N — IN such that
(i) tim g(n) = oo;
(ii) lim ¢(n)/f(n) = 0;
(iii) ¢(n) = n and ¢(2n) = 2¢(n) for every n = 1.
Then we define a function @ : N — N:
®(n) = [{m : p(m) = n}|.

Note that, for every m = 1,

(18) {n: @(n) = m}| = g(m).
Let I" be a subset of N such that for every m = 1
(19) IFn{l,....,m} = ¢(m).

Finally, define a permutation s as follows:

{ o(n), n&l
n(n) =
free(n), nel,

where free(n) denotes the minimal positive integer k ¢ {x(1),7(2),...,7(n —1)}. The
permutation x is well defined: indeed, the functions @(n) and free(n) are strictly increasing
and @(n) = n, free(n) = n for every n. We see that

Q(m) C{n:®(n)=m}U{free(n):ne ' N{l,...,m}}.

By (18) and (19),

(20) |Q(m)| = 2¢(m).

Let a positive integer k be so that 2 = ¢. By (20) and (iii), we have for every n = 1:
|Q(cn)| = |2(2%n)| = 2¢(2%n) =2 - 2%p(n).

Thus

| Q(en)|
o =) ™ Fn)

The proof is complete. [

= ok jim 200 _ g
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