Midterm Exam

MAT 235C, Spring 2004. Due 05/28/2004

1. (a) Estimate the tail probability $\mathbb{P}\left(\left|\sum a_{i} X_{i}\right|>t\right)$ for independent mean zero identically distributed random variables X_{i}, which are uniformly bounded: $\left|X_{i}\right| \leq M$. Here $\left(a_{i}\right)$ is a fixed finite secuence of real numbers and $t>0$.
(Hint: apply symmetrization and use Laplace transform method similarly to what we did for symmetric Bernoulli r.v.'s)
(b) From (a), deduce Khinchine inequality for these random variables and for $1 \leq p<\infty$:

$$
A_{p}(M)\left(\sum a_{i}^{2}\right)^{1 / 2} \leq\left(\mathbb{E}\left|\sum a_{i} X_{i}\right|^{p}\right)^{1 / p} \leq B_{p}(M)\left(\sum a_{i}^{2}\right)^{1 / 2}
$$

(Hint: there are two nontrivial cases: $p=1$ and $2<p \leq \infty$. Consider the latter case first, using part (a). Then look at $p=1$ using symmetrization and extrapolation from second and fourth moments to the first moment. One can also use Paley-Zygmund inequality.)
2. Prove the second Lévy's inequality: for every sequence of independent random variables X_{1}, \ldots, X_{n} and every $t>0$,

$$
\mathbb{P}\left(\max _{k \leq n}\left|X_{k}\right|>t\right) \leq 2 \mathbb{P}\left(\left|\sum_{k \leq n} X_{k}\right|>t\right)
$$

3. (a) Prove that doubling the argument on the complex circle is an ergodic and measure preserving transformation. Precisely, look at $\Omega=\{\omega \in \mathbb{C}$: $|\omega|=1\}$ with normalized Lebesgue measure and define the transformation $T: \Omega \rightarrow \Omega$ by $T \omega=\omega^{2}$. Prove that T is measure preserving and ergodic (compare the rotations of the circle; also think of what this means when we apply Ergodic theorem).
(Hint: for the ergodicity, look at an equivalent model, $\Omega=(0,1)$ and $T \omega=$ $2 \omega(\bmod 1)$. Understand how T acts on binary expansions $\omega=. d_{1} d_{2} d_{3} \ldots$ where each $d_{i}=0$ or 1 . For a set $A \subset \Omega$ of positive measure, find a dyadic interval which is almost entirely occupied by A (similarly to what we did for rotations). Deduce that A has almost full measure.)
(b) Describe all measure preserving transformations on a finite set with uniform measure (say, $\Omega=\{1, \ldots, n\}$ and $\mathbb{P}(\{k\})=1 / n$ for all k).
(c) In the definition of an invariant set, let us change $\mathbb{P}(A)=0$ or 1 by $A=\emptyset$ or Ω. Show that the rotations on the circle will no longer be ergodic.
