201B MIDTERM EXAM February 18, 2005

Closed book, closed notes. You may use any standard theorem, provided you state it carefully.

1. Let $U=\left\{u_{n}: n \in \mathbb{N}\right\}$ be an orthonormal set in a Hilbert space H. Let us define a map $P_{U}: H \rightarrow H$ as

$$
P_{U}(x)=\sum_{n=1}^{\infty}\left\langle u_{n}, x\right\rangle u_{n} .
$$

(a) Prove that P_{U} is a bounded linear operator in H.
(b) Compute the norm of P_{U}.
(c) Prove that $P_{U}^{2}=P_{U}$.
(d) When does P_{U} equal the identity operator on H ? Explain.
2. (a) Let $U=\left\{u_{n}: n \in \mathbb{N}\right\}$ be an orthonormal basis of $L^{2}([0,1])$. Prove that

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|\int_{a}^{b} u_{n}(x) d x\right|^{2}=b-a \quad \text { for all } 0<a<b<1 \tag{}
\end{equation*}
$$

(b) Let $U=\left\{u_{n}: n \in \mathbb{N}\right\}$ be an orthonormal set in $L^{2}([0,1])$. Assume that condition $\left(^{*}\right)$ holds. Prove that U is an orthonormal basis of $L^{2}([0,1])$.
(Hint: deduce from Parseval's identity from (*), first for all piecewise-constant functions, then for all functions using the result in Problem 1a.)
3. Consider the following initial value problem for $u(x, t)$, where $u(\cdot, t) \in L^{2}(\mathbb{T})$:

$$
\begin{aligned}
& u_{t}=u_{x x x} \\
& u(x, 0)=f(x) \in L^{2}(\mathbb{T}) .
\end{aligned}
$$

(This PDE is called linearized KdV (Korteweg-de Vries) equation.)
(a) Use Fourier series to solve this problem for $t>0$.
(b) Find a nontrivial sufficient condition for the solution $u(\cdot, t)$ to be smooth (that is, continuously differentiable) for all $t>0$.

