201C MIDTERM EXAM May 13, 2005

Closed book, closed notes. You may use any standard theorem, provided you state it accurately.

1. (a) Give the definition of a tempered distribution and of a regular tempered distribution.

(b) Prove that the tempered distribution p.v. $\frac{1}{x}$ given by

$$\left(\text{p.v.}\frac{1}{x}\right)(\varphi) = \lim_{\varepsilon \to 0^+} \int_{|x| > \varepsilon} \frac{\varphi(x)}{x} dx$$

is a singular distribution.

2. (a) Give the definition of the product φT of a test function $\varphi \in \mathcal{S}(\mathbb{R})$ and a tempered distribution T.

- (b) Give the definition of the derivative of a tempered distribution T.
- (c) Prove the identity

$$\varphi \delta' = \varphi(0)\delta' - \varphi'(0)\delta.$$

(d) Compute the derivative of the function $\log |x|$ as a distribution.

3. (a) Define the linear operator A on $L^2([-1,1])$ to be the N-th partial sum of the Taylor series at 0:

$$Af = \sum_{k=0}^{N} \frac{f^{(k)}(0)}{k!} x^{k},$$

with the domain $D(A) = C^{\infty}([-1, 1])$. Prove that the linear operator A is ubounded. (*Hint: find functions f arbitrarily small in* L^2 sense, and for which Af are the monomials of degrees up to N.)

(b) Calculate A^* .