
Problem Set 2
Fall 2006: 202, Functional Analysis. Due December 15, 2006

1. (Banach Limit) Develop a meaningful concept of the limit for all bounded (not
necessarily convergent) sequences.

Precisely, prove that for every x = (xn) ∈ ℓ∞ there exists a number Lim(xn), which
coinsides with the ordinary limit for the convergent sequences, and which satisfies:

• lim inf(xn) ≤ Lim(xn) ≤ lim sup(xn);

• Lim(xn + yn) = Lim(xn) + Lim(yn); Lim(cxn) = cLim(xn).

Hint. The Banach limit Lim has to be a linear functional on ℓ∞. Consider the subspace
L0 ⊂ ℓ∞ of all Cesaro convergent sequences, i.e. x ∈ L0 if lim 1

n
(x1 + . . . xn) exists (called

Cesaro limit). Define the Banach limit first on L0 as the Cesaro limit, and show that it is
bounded by the sublinear functional lim sup(xn). Then extend Lim onto the whole ℓ∞.

2. (Projections vs. Extensions) Let X0 be a closed subspace of a Banach space X ,
the following are equivalent:

(i) there exists a projection P ∈ L(X,X) onto X0;
(ii) for every Banach space Y , every operator T0 ∈ L(X0, Y ) can be extended to an

operator T ∈ L(X,Y ).

3. (Strict Separation Theorems) Recall that subsets A, B of a normed space X are
said to be separated by a hyperplane if there exists f ∈ X∗ and a constant θ such that

f(a) ≤ θ ≤ f(b) for all a ∈ A, b ∈ B. (1)

We say that the separation is strict if the strict inequalities hold in (1).
The Separation Theorem proved in class states that every two disjoint convex sets, one

of which has nonempty interior, can be separated by a hyperplane. Deduce from this the
following strict separation theorems:

(a) Every two disjoint convex closed subsets, one of which is compact, can be strictly
separated by a hyperplane;

(b) Every two disjoint convex open subsets can be strictly separated by a hyperplane.

4. (Mazur’s Lemma) Let xn be a sequence in a Banach space, which converges
weakly to a vector x. Prove that

{x} =

∞⋂
n=1

conv(xk)k≥n.

(The inclusion ⊆ was proved in class).

5. (General spectrum) We know that the spectrum of every bounded linear operator
is a nonempty compact subset in C. (Boundedness of the spectrum was proved in class;
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nonemptiness is Proposition 9.8 in the textbook [Hunter-Nachtergaele]; for closedness, see
p.75 of the textbook Eidelman-Milman-Tsolomitis]).

Prove the converse statement: every nonempty compact subset of C is the spectrum of
some linear operator.

Hint. Consider a diagonal operator T ∈ L(ℓ2, ℓ2) which acts on the canonical vector
basis (en) as Ten = λnen, where λn ∈ C.

In the next two exercises, we say that the operator has finite rank if its image is a finite
dimensional subspace.

6. Images of Compact Operators. Let T ∈ L(X,Y ) be a compact operator. We
proved in class that the image of λI − T is closed for all λ 6= 0. Show that for λ = 0,
the image is not closed for nontrivial operators. More precisely, prove that the image of a
compact operator T is closed if and only if T has finite rank.

7. Compact vs. Finite Rank Operators. Consider the integral operator T :
C[0, 1] → C[0, 1] defined as

(Tf)(τ) =

∫
1

0

K(t, τ)f(t) dt (2)

for some kernel K(t, τ) ∈ C([0, 1]2). Then T is a compact operator (Exercise 5.10 in the
textbook [Hunter-Nachtergaele]). Prove that:

(a) If the kernel can be expressed in the form

K(t, τ) =

n∑
k=1

φk(t)ψk(τ),

then T has finite rank.
(b) Every integral operator T as in (2) can be approximated with arbitrary accuracy (in

the operator norm) by integral operators with finite rank.

Remark. Part (b) motivates a general question. Can one approximate every compact
operator by operators of finite rank? This had been a longstanding open problem, solved
in negative in the 70’s. Yet, the answer is positive in spaces with (Shauder) bases, or more
generally, in spaces with an approximation property. Most known spaces, including C[0, 1],
have bases.
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