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1 Two Types of Statements

This course will focus on the non-asymptotic theory of random matrices. To
emphasize the notion of non-asymptotic theory, we first demonstrate two
types of probabilistic statements: asymptotic and non-asymptotic. This
first example exhibits an asymptotic statement about sums of independent
identically distributed (i.i.d.) random variables.

Example 1 (Central Limit Theorem). Let X1, X2, . . . , be symmetric ±1-
valued random variables (called Bernoulli random variables). Then by the
Central Limit Theorem as n →∞,

1√
n

n∑

i=1

Xi
dist.→ g, (1)

where g is a N(0,1) standard normal random variable. Recall that conver-
gence in distribution is equivalent to saying that for any t ∈ R, as n →∞,

P
( 1√

n

n∑

i=1

Xi > t
)
→ P(g > t) =

1√
2π

∫ ∞

t
e−t2/2dt. (2)

The above example exhibits an asymptotic statement since it says some-
thing about the limit as n →∞. Non-asymptotic statements are statements
that hold for all n, or at least for all n > n0 where n0 is some constant.
The next example demonstrates such a non-asymptotic statement known as
Bernstein’s Inequality.

Example 2 (Bernstein’s Inequality). Let X1, X2, . . . be as in Example 1.
For any n and t > 0,
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≤ 2e−t2/2. (3)
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2 Non-Asymptotic Techniques of Random Matrices

We will look at random matrices A with random i.i.d. entries aij . For
example, A could be the random matrix whose entries are i.i.d. standard
normal random variables (random Gaussian matrix), or i.i.d. symmetric
Bernoulli random variables (random Bernoulli matrix). Henceforth assume
N > n. A will be a tall N × n or a flat n × N matrix. As we will see
later, non-asymptotic techniques have applications in Geometric and Func-
tional Analysis, Computer Science, Approximation Theory, and Engineering
(specifically Signal Processing and Coding). From the Functional Analysis
viewpoint, we will look at these matrices as linear operators. In the case
where A is n × N , A is a linear operator A : RN → Rn. The study of
these kinds of matrices is in particular important to Dimension Reduction,
in which a finite set of points in RN is mapped into the lower dimensional
space Rn with the hopes that the distances are approximately preserved. In
the case where A is N × n, A is the embedding A : Rn → RN .

An important property of random matrices and one that we will be study-
ing is the spectrum of such matrices, and in particular, their singular values.
Recall that the singular values of A are the eigenvalues of

√
A∗A. When A is

N ×n we order the singular values as s1(A) ≥ s2(A) ≥ . . . ≥ sn(A). Denote
the Euclidean operator norm by ‖ · ‖ and recall then that s1(A) = ‖A‖ and
sn(A) = 1

‖A−1‖ where by A−1 we mean the inverse of A restricted to the
image of A. So then we have that for every x,

sn(A)‖x‖ ≤ ‖Ax‖ ≤ s1(A)‖x‖. (4)

Thus to say A is an almost-isometry we need only place a lower bound
on sn(A) and an upper bound on s1(A). This type of bounding has an
immediate application in Computer Science for example, when A : `n

2 → `N
1 .

If such an operator is an almost-isometry then the `2-norm of a vector can
be approximately calculated by simply finding its `1-norm. This eliminates
the need for the square root operation, something that is more expensive.
It has been shown using the Volume Ration Method that random matrices
with N = 2n satisfy this property. Below are a few results on bounds of
the smallest and biggest singular values. The first result is due to Gordon
[2, 3, 4]. See also [1].

Theorem 3 (Gordon). If A is an n×n random Gaussian matrix then with
high probability

s1(A) . 2
√

n. (5)
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Theorem 4 (Litvak, Pajor, Rudelson, Tomczak-Jaegermann [?]). For ran-
dom Bernoulli rectangular matrices, the smallest singular value obeys

sn(A) ≥ cn/N

√
n (6)

where cn/N depends only on the ratio n/N .

The next theorem is a very recent result of Rudelson and Vershynin.

Theorem 5 (Rudelson, Vershynin). For random Gaussian and Bernoulli
square matrices, with high probability the smallest singular value obeys

sn(A) & 1√
n

. (7)

We would also like to know the probability that such a matrix is non-
singular. That is, we would like an upper bound on P(sn(A) = 0). For
Gaussian matrices this probability is precisely 0, and for Bernoulli matrices
the tight upper bound is conjectured to be (1

2 + o(1))n. The following result
was proved in 1995 for Bernoulli matrices.

Theorem 6 (Kahn-Komlós-Szemerédi [5]). Let A be a random Bernoulli
matrix. Then there is a constant c ∈ (0, 1) so that

P(sn(A) = 0) ≤ cn. (8)

We will prove that for any ε > 0, P(sn(A) < ε√
n
) ≤ Cε + cn which will

imply the above two theorems.

References

[1] K. Davidson and S. Szarek. Local operator theory, random matrices
and banach spaces. Handbook of the Geometry of Banach Spaces, 1:317,
2001.

[2] Y. Gordon. On dvoretzky’s theorem and extensions of slepian’s lemma.
Israel seminar on geometrical aspects of functional analysis, 2:25, 1983.

[3] Y. Gordon. Some inequalities for guasian processes and applications.
Israel J. Math, 50:265, 1985.

[4] Y. Gordon. Majorization of gaussian processes and geometric applica-
tions. Probab. Theory Related Fields, 91:251, 1992.

[5] J. Kahn, J. Komlós, and E. Szemerédi. On the probability that a random
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