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1 Comparison Inequalities in Probability Theory

We will estimate the size of a random process (Xt)t∈T by the size of another
(simpler) random process (Yt)t∈T . Define a Gaussian centered process to be
when Xt is a mean-zero random variable. For a random variable X

‖X‖2 =
(
E |X|2

)1/2
=

( ∫
Ω
|X(w)|2dP

)1/2

where (Ω, P,Σ) is the underlying probability space in L2(Ω, P,Σ).

Theorem 1 (Slepian’s Inequality). Assume (Xt)t∈T , (Yt)t∈T are Gaussian
centered processes. If for all s, t ∈ T

‖Xt −Xs‖2 ≤ ‖Yt − Ys‖2,

then
E sup

t∈T
Xt ≤ E sup

t∈T
Yt.

Proof. See Ledoux-Talagrand §3.1 [2].

Observation 2. If additionally, the moments ‖Xt‖2 = ‖Yt‖2 for all t ∈ T ,
then

P(sup
t∈T

Xt > u) ≤ P(sup
t∈T

Yt > u)

for all u ≥ 0.

Definition 3 (Canonical Gaussian Process). Let T ⊂ Rn be a subset. Then
for all t ∈ T

Xt = 〈g, t〉 =
n∑

k=1

gktk

where g is the canonical Gaussian random vector in Rn (i.e., gk ∼ N(0, 1)
i.i.d.).

1



Example 4. If T = the canonical vector basis of Rn, then

(Xt)t∈T = {g1, g2, . . . , gn}

and the process is trivially equal to n i.i.d. N(0, 1) random variables.

Definition 5 (“Mean width” of T ).

E sup
t∈T

Xt = `(T ).

This gives a sense of the “size” of T . Contrast this with the measure of
volume. For instance, consider a set T which has a non-negligible width and
an infinitesimal cross section. This might lead one to dismiss T as being
“small” since it would have a negligible volume. However, examining `(T )
would reveal that T has a non-negligible size, at least in some direction. Note
that there are other definitions of the mean width as well.

Fact 6. The “size” of an increment equals the distance between indices.
That is,

‖Xt −Xs‖2 =
(
E |〈g, t− s〉|2

)1/2
= ‖t− s‖2.

2 Application for Gaussian Random Processes

Recall that A is an m×n Gaussian matrix (i.e., Aij = N(0, 1) i.i.d. random
variables). We want to find an upper bound on the largest singular value
of A

s1(A) = ‖A‖ ≤ ?.

Our goal will be to put this problem in the form of a canonical Gaussian
process.

Side Remark
‖A‖ = sup

u∈Sn−1

v∈Sm−1

〈Au, v〉

For this inner product we want the matrix A to play the gole of the Gaussian
vector g in Definition 3. First we need the following definitions and lemma.
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Definition 7 (Inner Product of Two Matrices). For two matrices A,B ∈
Rm×n, their inner product is defined as

〈A,B〉tr =
∑
i,j

AijBij = tr(ABT ).

It follows that this induces the Hilbert-Schmidt norm (also known as the
Froebenius norm):

‖A‖HS =
( ∑

i,j

A2
ij

)1/2
= tr(ABT ).

Definition 8 (Tensor Product). Let H,G be two Hilbert spaces. For any
u ∈ H, v ∈ G we can make the rank-one linear operator u ⊗ v : H → G
defined as

(u⊗ v) x = 〈u, x〉 v

for all x ∈ H.

Note: In the case of finite dimensional space with u ∈ Rn, v ∈ Rm we
have that (u⊗ v) is the m× n matrix (viuj)m n

i=1,j=1.

Lemma 9 (Canonical Form). 〈Au, v〉 = 〈A, u⊗ v〉tr

Proof. Examining the RHS we have from Definitions 7 and 8

tr(A (u⊗ v)T ) = tr(A (v ⊗ u))

=
∑

i

〈A (v ⊗ u) ei, ei〉

=
∑

i

〈viAu, ei〉

=
∑

i

vi(Au)i

= 〈v,Au〉

which, for real-valued vectors, equals the LHS.
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With Lemma 9 we can now write the norm of matrix A as

‖A‖ = sup
u∈Sn−1

v∈Sm−1

〈Au, v〉 = sup
u∈Sn−1

v∈Sm−1

〈A, v ⊗ u〉tr =: sup
u∈Sn−1

v∈Sm−1

X(u,v)

where
(
X(u,v)

)
(u,v)∈T is a canonical Gaussian process on T = Sn−1× Sm−1

because A is a canonical Gaussian “vector” as viewed in Rmn.

Now we compare
(
X(u,v)

)
(u,v)∈T to

(
Y(u,v)

)
(u,v)∈T . Let g and h be

canonical Gaussian vectors in Rn and Rm, respectively. Viewing the or-
dered pair (g, h) as a concatenation of vectors, we have that (g, h) ∈ Rm+n.
Similarly, (u, v) ∈ Rm+n. Then by Definition 3

Y(u,v) = 〈(g, h), (u, v)〉 = 〈g, u〉+ 〈h, v〉.

Applying Slepian’s Increment Inequality of Theorem 1 and Fact 6 we
have that

‖X(u,v) −X(u′,v′)‖2 ≤ ‖Y(u,v) − Y(u′,v′)‖2

is equivalent to ∥∥u⊗ v − u′ ⊗ v′
∥∥

HS
≤ ‖(u, v)− (u′, v′)‖2

for all u, u′ ∈ Sn−1 and v, v′ ∈ Sm−1.

Example 10. Applying Minkowski’s inequality we obtain∑
i,j

(ujvi − u′jv
′
i)

2 ≤
∑

j

(uj − u′j)
2 +

∑
i

(vi − v′i)
2.

Before continuing, note that E ‖g‖2 < (E ‖g‖2
2)

1/2 =
∑n

i=1 E g2
i =

√
n,

and similarly E ‖h‖2 <
√

m. We can claim strict inequality here since the
first and second moments of a Gaussian are not equal. By Slepian’s Lemma
we have
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E ‖A‖ = E sup
u∈Sn−1

v∈Sm−1

X(u,v)

≤ E sup
u∈Sn−1

v∈Sm−1

Y(u,v)

≤ E sup
u∈Sn−1

〈g, u〉 + E sup
v∈Sm−1

〈h, v〉

≤ E sup
u∈Sn−1

〈g, u〉 + E sup
v∈Sm−1

〈h, v〉

= E ‖g‖2 + E ‖h‖2

≤
√

n +
√

m.

This yields the following theorem.

Theorem 11. Let A be a real m × n random Gaussian matrix. Then
E ‖A‖ <

√
m +

√
n.

Asymptotic theory gives us: 1√
m
‖A‖ → 1+

√
n
m almost surely as n →∞,

where n
m → constant.

Note that the argument in this lecture is due to Gordon and can be
found in [1].

In the next lecture we will see that we can find a lower bound for the
expectation of the smallest singular value

E s1(A) >
√

m −
√

n.
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