Non-Asymptotic Theory of Random Matrices Lecture 10: Slepian's Inequality Sharpness Bounds for Gaussian Matrices Date: February 6, 2007

Lecturer: Roman Vershynin

Scribe: Matthew Herman

1 Comparison Inequalities in Probability Theory

We will estimate the size of a random process $(X_t)_{t\in T}$ by the size of another (simpler) random process $(Y_t)_{t\in T}$. Define a *Gaussian centered process* to be when X_t is a mean-zero random variable. For a random variable X

$$||X||_2 = \left(\mathbb{E} |X|^2\right)^{1/2} = \left(\int_{\Omega} |X(w)|^2 d\mathbb{P}\right)^{1/2}$$

where $(\Omega, \mathbb{P}, \Sigma)$ is the underlying probability space in $L^2(\Omega, \mathbb{P}, \Sigma)$.

Theorem 1 (Slepian's Inequality). Assume $(X_t)_{t\in T}, (Y_t)_{t\in T}$ are Gaussian centered processes. If for all $s, t \in T$

$$||X_t - X_s||_2 \leq ||Y_t - Y_s||_2,$$

then

$$\mathbb{E} \sup_{t \in T} X_t \leq \mathbb{E} \sup_{t \in T} Y_t.$$

Proof. See Ledoux-Talagrand §3.1 [2].

Observation 2. If additionally, the moments $||X_t||_2 = ||Y_t||_2$ for all $t \in T$, then

$$\mathbb{P}(\sup_{t \in T} X_t > u) \leq \mathbb{P}(\sup_{t \in T} Y_t > u)$$

for all $u \geq 0$.

Definition 3 (Canonical Gaussian Process). Let $T \subset \mathbb{R}^n$ be a subset. Then for all $t \in T$

$$X_t = \langle g, t \rangle = \sum_{k=1}^n g_k t_k$$

where g is the canonical Gaussian random vector in \mathbb{R}^n (i.e., $g_k \sim N(0,1)$ i.i.d.). **Example 4.** If T = the canonical vector basis of \mathbb{R}^n , then

$$(X_t)_{t\in T} = \{g_1, g_2, \dots, g_n\}$$

and the process is trivially equal to n i.i.d. N(0,1) random variables.

Definition 5 ("Mean width" of T).

$$\mathbb{E} \sup_{t \in T} X_t = \ell(T).$$

This gives a sense of the "size" of T. Contrast this with the measure of volume. For instance, consider a set T which has a non-negligible width and an infinitesimal cross section. This might lead one to dismise T as being "small" since it would have a negligible volume. However, examining $\ell(T)$ would reveal that T has a non-negligible size, at least in some direction. Note that there are other definitions of the mean width as well.

Fact 6. The "size" of an increment equals the distance between indices. That is,

$$||X_t - X_s||_2 = \left(\mathbb{E} |\langle g, t - s \rangle|^2\right)^{1/2} = ||t - s||_2.$$

2 Application for Gaussian Random Processes

Recall that A is an $m \times n$ Gaussian matrix (i.e., $A_{ij} = N(0, 1)$ i.i.d. random variables). We want to find an upper bound on the largest singular value of A

$$s_1(A) = ||A|| \le ?.$$

Our goal will be to put this problem in the form of a canonical Gaussian process.

Side Remark

$$||A|| = \sup_{\substack{u \in S^{n-1}\\v \in S^{m-1}}} \langle Au, v \rangle$$

For this inner product we want the matrix A to play the gole of the Gaussian vector g in Definition 3. First we need the following definitions and lemma.

Definition 7 (Inner Product of Two Matrices). For two matrices $A, B \in \mathbb{R}^{m \times n}$, their inner product is defined as

$$\langle A, B \rangle_{tr} = \sum_{i,j} A_{ij} B_{ij} = tr(AB^T).$$

It follows that this induces the Hilbert-Schmidt norm (also known as the Froebenius norm):

$$||A||_{HS} = \left(\sum_{i,j} A_{ij}^2\right)^{1/2} = tr(AB^T).$$

Definition 8 (Tensor Product). Let H, G be two Hilbert spaces. For any $u \in H, v \in G$ we can make the rank-one linear operator $u \otimes v : H \to G$ defined as

$$(u \otimes v) x = \langle u, x \rangle v$$

for all $x \in H$.

Note: In the case of finite dimensional space with $u \in \mathbb{R}^n, v \in \mathbb{R}^m$ we have that $(u \otimes v)$ is the $m \times n$ matrix $(v_i u_j)_{i=1,j=1}^m$.

Lemma 9 (Canonical Form). $\langle Au, v \rangle = \langle A, u \otimes v \rangle_{tr}$

Proof. Examining the RHS we have from Definitions 7 and 8

$$tr(A (u \otimes v)^{T}) = tr(A (v \otimes u))$$

= $\sum_{i} \langle A (v \otimes u) e_{i}, e_{i} \rangle$
= $\sum_{i} \langle v_{i}Au, e_{i} \rangle$
= $\sum_{i} v_{i}(Au)_{i}$
= $\langle v, Au \rangle$

which, for real-valued vectors, equals the LHS.

With Lemma 9 we can now write the norm of matrix A as

$$||A|| = \sup_{\substack{u \in S^{n-1} \\ v \in S^{m-1}}} \langle Au, v \rangle = \sup_{\substack{u \in S^{n-1} \\ v \in S^{m-1}}} \langle A, v \otimes u \rangle_{tr} =: \sup_{\substack{u \in S^{n-1} \\ v \in S^{m-1}}} X_{(u,v)}$$

where $(X_{(u,v)})_{(u,v)\in T}$ is a canonical Gaussian process on $T = S^{n-1} \times S^{m-1}$ because A is a canonical Gaussian "vector" as viewed in \mathbb{R}^{mn} .

Now we compare $(X_{(u,v)})_{(u,v)\in T}$ to $(Y_{(u,v)})_{(u,v)\in T}$. Let g and h be canonical Gaussian vectors in \mathbb{R}^n and \mathbb{R}^m , respectively. Viewing the ordered pair (g,h) as a concatenation of vectors, we have that $(g,h) \in \mathbb{R}^{m+n}$. Similarly, $(u,v) \in \mathbb{R}^{m+n}$. Then by Definition 3

$$Y_{(u,v)} = \langle (g,h), (u,v) \rangle = \langle g,u \rangle + \langle h,v \rangle.$$

Applying Slepian's Increment Inequality of Theorem 1 and Fact 6 we have that

$$||X_{(u,v)} - X_{(u',v')}||_2 \leq ||Y_{(u,v)} - Y_{(u',v')}||_2$$

is equivalent to

$$||u \otimes v - u' \otimes v'||_{HS} \leq ||(u, v) - (u', v')||_2$$

for all $u, u' \in S^{n-1}$ and $v, v' \in S^{m-1}$.

Example 10. Applying Minkowski's inequality we obtain

$$\sum_{i,j} (u_j v_i - u'_j v'_i)^2 \leq \sum_j (u_j - u'_j)^2 + \sum_i (v_i - v'_i)^2.$$

Before continuing, note that $\mathbb{E} \|g\|_2 < (\mathbb{E} \|g\|_2^2)^{1/2} = \sum_{i=1}^n \mathbb{E} g_i^2 = \sqrt{n}$, and similarly $\mathbb{E} \|h\|_2 < \sqrt{m}$. We can claim strict inequality here since the first and second moments of a Gaussian are not equal. By Slepian's Lemma we have

$$\begin{split} \mathbb{E} \|A\| &= \mathbb{E} \sup_{\substack{u \in S^{n-1} \\ v \in S^{m-1}}} X_{(u,v)} \\ &\leq \mathbb{E} \sup_{\substack{u \in S^{n-1} \\ v \in S^{m-1}}} Y_{(u,v)} \\ &\leq \mathbb{E} \sup_{u \in S^{n-1}} \langle g, u \rangle + \mathbb{E} \sup_{v \in S^{m-1}} \langle h, v \rangle \\ &\leq \mathbb{E} \sup_{u \in S^{n-1}} \langle g, u \rangle + \mathbb{E} \sup_{v \in S^{m-1}} \langle h, v \rangle \\ &= \mathbb{E} \|g\|_2 + \mathbb{E} \|h\|_2 \\ &\leq \sqrt{n} + \sqrt{m}. \end{split}$$

This yields the following theorem.

Theorem 11. Let A be a real $m \times n$ random Gaussian matrix. Then $\mathbb{E} \|A\| < \sqrt{m} + \sqrt{n}$.

Asymptotic theory gives us: $\frac{1}{\sqrt{m}} ||A|| \to 1 + \sqrt{\frac{n}{m}}$ almost surely as $n \to \infty$, where $\frac{n}{m} \to \text{constant}$.

Note that the argument in this lecture is due to Gordon and can be found in [1].

In the next lecture we will see that we can find a lower bound for the expectation of the smallest singular value

$$\mathbb{E}s_1(A) > \sqrt{m} - \sqrt{n}.$$

References

- K. Davidson and S. Szarek. Local operator theory, random matrices and banach spaces. *Handbook of the Geometry of Banach Spaces*, 1:317, 2001.
- [2] Michel Ledoux and Michel Talagrand. Probability in Banach spaces, volume 23 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1991.