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1 Review

Slepian’s Inequality: Let (Xt)t∈T and (Yt)t∈T be two Gaussian processes.
If

‖Xt −Xs‖2 ≤ ‖Yt − Ys‖2 ∀ t, s ∈ T,

then
E sup

t∈T
Xt ≤ E sup

t∈T
Yt.

We used Slepian’s inequality to estimate the largest singular value of an
m× n Gaussian random matrix A (i.e. the operator norm of A, ‖A‖):

s1(A) = sup
u∈Sn−1

‖Au‖2 = sup
u∈Sn−1

v∈Sm−1

〈Au, v 〉 = sup
u∈Sn−1

v∈Sm−1

Xu,v,

where Xu,v = 〈Au, v 〉 is a Gausian random variable so that the supremum
can be considered as a Gaussian process. Then we compared it to a simpler
process Yu,v, applied the Slepian’s inequality and concluded that s1(A) ≤√

m +
√

n.

Now, we want to estimate the smallest singular value of A (i.e. 1/‖A−1 ‖):

sn(A) = inf
u∈Sn−1

‖Au ‖2 = inf
u∈Sn−1

sup
v∈Sm−1

〈Au, v 〉 ≥?

Note that this is a minimization problem, so Slepian’s inequality does not
apply.

2 Gordon’s Inequality; Estimate for Smallest Singular Value

Gordon’s Inequality: Let (Xu,v)u∈U
v∈V

and (Yu,v)u∈U
v∈V

be centered Gaussian

processes (Here,“centered” means that the expectations of all the random
variables are zero).
Assume that:
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(1) ‖Xu,v −Xu′,v′ ‖2 ≤ ‖ Yu,v − Yu′,v′ ‖2 if u 6= u′;

(2) ‖Xu,v −Xu,v′ ‖2 = ‖ Yu,v − Yu,v′ ‖2.

Then, E sup
u∈U

inf
v∈V

Xu,v ≤ E sup
u∈U

inf
v∈V

Yu,v.

Remarks :

1. Gordon’s inequality contains Slepian’s inequality by taking the index
set V to be a singleton set (i.e. |V | = 1).

2. If we apply Gordon’s inequality for−Xu,v and−Yu,v, we get E inf
u∈U

sup
v∈V

Xu,v ≤

E inf
u∈U

sup
v∈V

Yu,v.

3. For the proof of Gordon’s inequality, see [7],Chapter 3.

4. Gordon’s inequality also holds for V replaced by VU , that is, the index
space V can depend on U.

Now, we will use Gordon’s inequality to get an estimate for sn(A).

Recall that we recognize the inner product 〈Au, v〉 as the trace inner product
of the random vector A and the tensor product u⊗ v:

〈Au, v 〉 = 〈A, u⊗ v 〉tr.

We let Xu,v = 〈A, u⊗v 〉tr, and compare the process (Xu,v) with the process
(Yu,v), where Yu,v = 〈(g, h), (u, v)〉 = 〈 g, u 〉+〈h, v 〉, and (g,h) is considered
as a Gaussian vector in Rm+n.

To utilize Gordon’s inequality, we need first to compare the increments:

‖Xu,v −Xu′,v′ ‖2 = ‖ u⊗ v − u′ ⊗ v′ ‖HS

‖ Yu,v − Yu′,v′ ‖2 = ‖ (u, v)− (u′, v′) ‖2 =
√
‖u− u′‖2

2 + ‖v − v′‖2
2

(Recall that for a canonical Gaussian process Xt = 〈g, t〉, we have that
‖Xt −Xs‖2 = ‖t− s‖2)

We proved that ‖ u ⊗ v − u′ ⊗ v′ ‖2
HS ≤ ‖u − u′‖2

2 + ‖v − v′‖2
2 for all unit

vectors u, u′, v, v′. This gives condition (1) in Gordon’s inequality, where we
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take U = Sn−1 and V = Sm−1.

If u = u′, then ‖u ⊗ v − u′ ⊗ v′‖HS = ‖v − v′‖2 since ‖u‖2 = 1 (This is
left as an exercise to check).
So condition (2) is also satisfied. Therefore, we may apply Gordon’s inequal-
ity to get

E sn(A) = E inf
u

sup
v

Xu,v ≥ E inf
u

sup
v

Yu,v = E inf
u

sup
v
{〈g, u〉 + 〈h, v〉} =

E inf
u
〈g, u〉+ E sup

v
〈h, v〉 = −E ‖g‖2 + E ‖h‖2 ≥

√
m−

√
n

by explicit computation (the gap between E‖g‖2 and
√

n is larger than
the gap between E‖h‖2 and

√
m).

3 Deviation Inequalities: How far are s1(A) and sn(A) from
their averages?

Concentration of Measure:
Let A be a canonical Gaussian vector in Rmn. Then, we can view s1(A) and
sn(A) as functions of A from Rmn to R.
If s1(A) and sn(A) are 1−Lipschitz with respect to A, then by concentration
of measure, they will be well concentrated around their means. The following
proposition shows that the functions A 7→ s1(A) and A 7→ sn(A) are actually
1− Lipschitz.

Proposition 1 (1-Lipschitz Conditions). |s1(A) − s1(B)| ≤ ‖A − B‖ and
|sn(A)− sn(B)| ≤ ‖A−B‖.

Proof. |s1(A)− s1(B)| =
‖A‖ − ‖B‖

 ≤ ‖A−B‖,
sn(A) = inf

u
‖Au‖2 ≤ inf

u
{‖Bu‖2 + ‖(A−B)u‖2} ≤ sn(B) + ‖A−B‖

Remark :

1. Note that ‖A−B‖ ≤ ‖A−B‖HS so that |s1(A)−s1(B)| ≤ ‖A−B‖HS

and |sn(A)− sn(B)| ≤ ‖A−B‖HS .

2. Perturbation theory of eigenvalues:(general results for our proposition)

• H.Weyl (1912): |sk(A)− sk(B)| ≤ ‖A−B‖ ∀ k. See [8].

• Mirsky (1960):
∑

k

|sk(A)− sk(B)|2 ≤ ‖A−B‖2
HS . See [4].
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Now, by Theorem 7 (Concentration of Measure in Gauss Space (functional
form)) in Lecture 3, we have that

P(|sk(A)− Esk(A)| > t) ≤ 2 exp (−t2/2) ∀ k, ∀ t > 0

Hence,
P(s1(A) >

√
m +

√
n + t) ≤ 2 exp (−t2/2)

P(sn(A) <
√

m−
√

n− t) ≤ 2 exp (−t2/2).

Remark :
The constant 2 can be improved to 1 since we only have one-sided inequalities
as our events. That is, we have

P(s1(A) >
√

m +
√

n + t) ≤ exp (−t2/2)

P(sn(A) <
√

m−
√

n− t) ≤ exp (−t2/2).

Theorem 2 (Singular Values of Gaussian Matrices). Let A be an m × n
matrix with i.i.d. standard Gaussian entries. Then,

√
m−

√
n ≤ Esn(A) ≤ Es1(A) ≤

√
m +

√
n

Moreover,
√

m−
√

n− t ≤ sn(A) ≤ s1(A) ≤
√

m +
√

n + t

holds with probability at least 1− 2 exp (−t2/2) for all t ≥ 0.

Remark :

1. If we let A′ = 1√
m

A, then we have

1−
√

n/m ≤ Esn(A′) ≤ Es1(A′) ≤ 1 +
√

n/m.

So if the aspect ratio n/m < 1− ε (so the matrix is not square), then
A is almost a nice isomorphism.

2. Notice that the probability estimate is not sharp. So what are the
fluctuations of sk(A)?
By the concentration inequality P(|sk(A)−Esk(A)| > t) ≤ 2 exp (−t2/2),
we see that the standard deviation of sk(A) is of constant order:
σ(sk(A)) = O(1).
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• Aysmptotic theory implies that for m = n (square matrices),
σ(s1(A)) = O(n1/3). In particular, it was shown in Johansson
[3] and Johnstone [2] that if n/m = constant, then as n → ∞,
(s1(A))2−µ

σ → Tracy-Widom Law, where µ = (
√

m +
√

n)2, σ =
(
√

m +
√

n)( 1√
m

+ 1√
n
)1/3 = O(n1/3). For results on subgaussian

matrices, see [6] and [5].
• Nonasymptotic results: unknown even for Gaussian random ma-

trices. Here is a conjecture that would agree with Johansson-
Johnstone:

P(|s1(A)− Es1(A)| > t) ≤ exp (−c(n1/6t)3/2).

Aubrun proved this for self-adjoint Gaussian case in 2005. See
[1]. For subgaussian matrices, even P(|s1(A) − Es1(A)| > t) ≤
exp (−ct2) is unknown.
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