Non-Asymptotic Theory of Random Matrices Lecture 11: Gordon's Inequality

Lecturer: Roman Vershynin
Scribe: Yuting Yang

Thursday, Feburuary 08, 2007

1 Review

Slepian's Inequality: Let $\left(X_{t}\right)_{t \in T}$ and $\left(Y_{t}\right)_{t \in T}$ be two Gaussian processes. If

$$
\left\|X_{t}-X_{s}\right\|_{2} \leq\left\|Y_{t}-Y_{s}\right\|_{2} \forall t, s \in T
$$

then

$$
\mathbb{E} \sup _{t \in T} X_{t} \leq \mathbb{E} \sup _{t \in T} Y_{t} .
$$

We used Slepian's inequality to estimate the largest singular value of an $m \times n$ Gaussian random matrix A (i.e. the operator norm of $\mathrm{A},\|A\|)$:

$$
s_{1}(A)=\sup _{u \in S^{n-1}}\|A u\|_{2}=\sup _{\substack{u \in S^{n-1} \\ v \in S^{m-1}}}\langle A u, v\rangle=\sup _{\substack{u \in S^{n-1} \\ v \in S^{m-1}}} X_{u, v},
$$

where $X_{u, v}=\langle A u, v\rangle$ is a Gausian random variable so that the supremum can be considered as a Gaussian process. Then we compared it to a simpler process $Y_{u, v}$, applied the Slepian's inequality and concluded that $s_{1}(A) \leq$ $\sqrt{m}+\sqrt{n}$.

Now, we want to estimate the smallest singular value of A (i.e. $1 /\left\|A^{-1}\right\|$):

$$
s_{n}(A)=\inf _{u \in S^{n-1}}\|A u\|_{2}=\inf _{u \in S^{n-1}} \sup _{v \in S^{m-1}}\langle A u, v\rangle \geq ?
$$

Note that this is a minimization problem, so Slepian's inequality does not apply.

2 Gordon's Inequality; Estimate for Smallest Singular Value

Gordon's Inequality: Let $\left(X_{u, v}\right)_{\substack{u \in U \\ v \in V}}$ and $\left(Y_{u, v}\right)_{\substack{u \in U \\ v \in V}}$ be centered Gaussian processes (Here, "centered" means that the expectations of all the random variables are zero).
Assume that:
(1) $\left\|X_{u, v}-X_{u^{\prime}, v^{\prime}}\right\|_{2} \leq\left\|Y_{u, v}-Y_{u^{\prime}, v^{\prime}}\right\|_{2}$ if $u \neq u^{\prime}$;
(2) $\left\|X_{u, v}-X_{u, v^{\prime}}\right\|_{2}=\left\|Y_{u, v}-Y_{u, v^{\prime}}\right\|_{2}$.

Then, $\mathbb{E} \sup _{u \in U} \inf _{v \in V} X_{u, v} \leq \mathbb{E} \sup _{u \in U} \inf _{v \in V} Y_{u, v}$.

Remarks :

1. Gordon's inequality contains Slepian's inequality by taking the index set V to be a singleton set (i.e. $|V|=1$).
2. If we apply Gordon's inequality for $-X_{u, v}$ and $-Y_{u, v}$, we get $\mathbb{E} \inf _{u \in U} \sup _{v \in V} X_{u, v} \leq$ $\mathbb{E} \inf _{u \in U} \sup _{v \in V} Y_{u, v}$.
3. For the proof of Gordon's inequality, see [7],Chapter 3.
4. Gordon's inequality also holds for V replaced by V_{U}, that is, the index space V can depend on U .

Now, we will use Gordon's inequality to get an estimate for $s_{n}(A)$.
Recall that we recognize the inner product $\langle A u, v\rangle$ as the trace inner product of the random vector A and the tensor product $u \otimes v$:

$$
\langle A u, v\rangle=\langle A, u \otimes v\rangle_{t r}
$$

We let $X_{u, v}=\langle A, u \otimes v\rangle_{t r}$, and compare the process $\left(X_{u, v}\right)$ with the process $\left(Y_{u, v}\right)$, where $Y_{u, v}=\langle(g, h),(u, v)\rangle=\langle g, u\rangle+\langle h, v\rangle$, and (g,h) is considered as a Gaussian vector in \mathbb{R}^{m+n}.

To utilize Gordon's inequality, we need first to compare the increments:

$$
\begin{gathered}
\left\|X_{u, v}-X_{u^{\prime}, v^{\prime}}\right\|_{2}=\left\|u \otimes v-u^{\prime} \otimes v^{\prime}\right\|_{H S} \\
\left\|Y_{u, v}-Y_{u^{\prime}, v^{\prime}}\right\|_{2}=\left\|(u, v)-\left(u^{\prime}, v^{\prime}\right)\right\|_{2}=\sqrt{\left\|u-u^{\prime}\right\|_{2}^{2}+\left\|v-v^{\prime}\right\|_{2}^{2}}
\end{gathered}
$$

(Recall that for a canonical Gaussian process $X_{t}=\langle g, t\rangle$, we have that $\left.\left\|X_{t}-X_{s}\right\|_{2}=\|t-s\|_{2}\right)$

We proved that $\left\|u \otimes v-u^{\prime} \otimes v^{\prime}\right\|_{H S}^{2} \leq\left\|u-u^{\prime}\right\|_{2}^{2}+\left\|v-v^{\prime}\right\|_{2}^{2}$ for all unit vectors $u, u^{\prime}, v, v^{\prime}$. This gives condition (1) in Gordon's inequality, where we
take $U=S^{n-1}$ and $V=S^{m-1}$.
If $u=u^{\prime}$, then $\left\|u \otimes v-u^{\prime} \otimes v^{\prime}\right\|_{H S}=\left\|v-v^{\prime}\right\|_{2}$ since $\|u\|_{2}=1$ (This is left as an exercise to check).
So condition (2) is also satisfied. Therefore, we may apply Gordon's inequality to get
$\mathbb{E} s_{n}(A)=\mathbb{E} \inf _{u} \sup X_{u, v} \geq \mathbb{E} \inf _{u} \sup Y_{u, v}=\mathbb{E} \inf _{u} \sup \{\langle g, u\rangle+\langle h, v\rangle\}=$ $\mathbb{E} \inf _{u}\langle g, u\rangle+\mathbb{E} \sup _{v}\langle h, v\rangle=-\mathbb{E}\|g\|_{2}+\mathbb{E}\|h\|_{2} \geq \sqrt{m}-\sqrt{n}$
by explicit computation (the gap between $\mathbb{E}\|g\|_{2}$ and \sqrt{n} is larger than the gap between $\mathbb{E}\|h\|_{2}$ and $\left.\sqrt{m}\right)$.

3 Deviation Inequalities: How far are $s_{1}(A)$ and $s_{n}(A)$ from their averages?

Concentration of Measure:
Let A be a canonical Gaussian vector in $\mathbb{R}^{m n}$. Then, we can view $s_{1}(A)$ and $s_{n}(A)$ as functions of A from $\mathbb{R}^{m n}$ to \mathbb{R}.
If $s_{1}(A)$ and $s_{n}(A)$ are 1 -Lipschitz with respect to A , then by concentration of measure, they will be well concentrated around their means. The following proposition shows that the functions $A \mapsto s_{1}(A)$ and $A \mapsto s_{n}(A)$ are actually 1 - Lipschitz.

Proposition 1 (1-Lipschitz Conditions). $\left|s_{1}(A)-s_{1}(B)\right| \leq\|A-B\|$ and $\left|s_{n}(A)-s_{n}(B)\right| \leq\|A-B\|$.

Proof. $\left|s_{1}(A)-s_{1}(B)\right|=|\|A\|-\|B\|| \leq\|A-B\|$,

$$
s_{n}(A)=\inf _{u}\|A u\|_{2} \leq \inf _{u}\left\{\|B u\|_{2}+\|(A-B) u\|_{2}\right\} \leq s_{n}(B)+\|A-B\|
$$

Remark:

1. Note that $\|A-B\| \leq\|A-B\|_{H S}$ so that $\left|s_{1}(A)-s_{1}(B)\right| \leq\|A-B\|_{H S}$ and $\left|s_{n}(A)-s_{n}(B)\right| \leq\|A-B\|_{H S}$.
2. Perturbation theory of eigenvalues:(general results for our proposition)

- H.Weyl (1912): $\left|s_{k}(A)-s_{k}(B)\right| \leq\|A-B\| \forall k$. See [8].
- Mirsky (1960): $\sum_{k}\left|s_{k}(A)-s_{k}(B)\right|^{2} \leq\|A-B\|_{H S}^{2}$. See [4].

Now, by Theorem 7 (Concentration of Measure in Gauss Space (functional form)) in Lecture 3, we have that

$$
\mathbb{P}\left(\left|s_{k}(A)-\mathbb{E} s_{k}(A)\right|>t\right) \leq 2 \exp \left(-t^{2} / 2\right) \quad \forall k, \quad \forall t>0
$$

Hence,

$$
\begin{aligned}
\mathbb{P}\left(s_{1}(A)>\sqrt{m}+\sqrt{n}+t\right) & \leq 2 \exp \left(-t^{2} / 2\right) \\
\mathbb{P}\left(s_{n}(A)<\sqrt{m}-\sqrt{n}-t\right) & \leq 2 \exp \left(-t^{2} / 2\right)
\end{aligned}
$$

Remark :
The constant 2 can be improved to 1 since we only have one-sided inequalities as our events. That is, we have

$$
\begin{aligned}
& \mathbb{P}\left(s_{1}(A)>\sqrt{m}+\sqrt{n}+t\right) \leq \exp \left(-t^{2} / 2\right) \\
& \mathbb{P}\left(s_{n}(A)<\sqrt{m}-\sqrt{n}-t\right) \leq \exp \left(-t^{2} / 2\right)
\end{aligned}
$$

Theorem 2 (Singular Values of Gaussian Matrices). Let A be an $m \times n$ matrix with i.i.d. standard Gaussian entries. Then,

$$
\sqrt{m}-\sqrt{n} \leq \mathbb{E} s_{n}(A) \leq \mathbb{E} s_{1}(A) \leq \sqrt{m}+\sqrt{n}
$$

Moreover,

$$
\sqrt{m}-\sqrt{n}-t \leq s_{n}(A) \leq s_{1}(A) \leq \sqrt{m}+\sqrt{n}+t
$$

holds with probability at least $1-2 \exp \left(-t^{2} / 2\right)$ for all $t \geq 0$.
Remark:

1. If we let $A^{\prime}=\frac{1}{\sqrt{m}} A$, then we have

$$
1-\sqrt{n / m} \leq \mathbb{E} s_{n}\left(A^{\prime}\right) \leq \mathbb{E} s_{1}\left(A^{\prime}\right) \leq 1+\sqrt{n / m} .
$$

So if the aspect ratio $n / m<1-\epsilon$ (so the matrix is not square), then A is almost a nice isomorphism.
2. Notice that the probability estimate is not sharp. So what are the fluctuations of $s_{k}(A)$?
By the concentration inequality $\mathbb{P}\left(\left|s_{k}(A)-\mathbb{E} s_{k}(A)\right|>t\right) \leq 2 \exp \left(-t^{2} / 2\right)$, we see that the standard deviation of $s_{k}(A)$ is of constant order: $\sigma\left(s_{k}(A)\right)=O(1)$.

- Aysmptotic theory implies that for $m=n$ (square matrices), $\sigma\left(s_{1}(A)\right)=O\left(n^{1 / 3}\right)$. In particular, it was shown in Johansson [3] and Johnstone [2] that if $n / m=$ constant, then as $n \rightarrow \infty$, $\frac{\left(s_{1}(A)\right)^{2}-\mu}{\sigma} \rightarrow$ Tracy-Widom Law, where $\mu=(\sqrt{m}+\sqrt{n})^{2}, \sigma=$ $(\sqrt{m}+\sqrt{n})\left(\frac{1}{\sqrt{m}}+\frac{1}{\sqrt{n}}\right)^{1 / 3}=O\left(n^{1 / 3}\right)$. For results on subgaussian matrices, see [6] and [5].
- Nonasymptotic results: unknown even for Gaussian random matrices. Here is a conjecture that would agree with JohanssonJohnstone:

$$
\mathbb{P}\left(\left|s_{1}(A)-\mathbb{E} s_{1}(A)\right|>t\right) \leq \exp \left(-c\left(n^{1 / 6} t\right)^{3 / 2}\right) .
$$

Aubrun proved this for self-adjoint Gaussian case in 2005. See [1]. For subgaussian matrices, even $\mathbb{P}\left(\left|s_{1}(A)-\mathbb{E} s_{1}(A)\right|>t\right) \leq$ $\exp \left(-c t^{2}\right)$ is unknown.

References

[1] G. Aubrun. A small deviation inequality for random matrices. Sminaire de probabilits, 38:1857, 2005.
[2] I.Johnstone. On the distribution of the largest eigenvalue in principal component analysis. Annals of Statistics, 29:295, 2001.
[3] K. Johansson. Shape fluctuations and random matrices. Comm. Math. Phys., 209:437, 2000.
[4] L.Mirsky. Symmetric gauge functions and unitarily invariant norms. Quart.J.Math., 11:50, 1960.
[5] S. Peche. The largest eigenvalue of small rank perturbations of hermitian random matrics. Preprint : arXiv:math.PR/, 0411487, 2003.
[6] A. Soshnikov. A note on universality of the distribution of the largest eigenvalues in certain sample covariance matrices. J. Statist. Phys., 108:1033, 2002.
[7] M. Ledoux; M. Talagrand. Probability in Banach spaces : isoperimetry and processes. Springer-Verlag, Berlin ; New York, 1991.
[8] H. Weyl. The laws of asymptotic distribution of the eigenvalues of linear partial differential equation. Math.Ann., 71:441, 1912.

