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1 Sudakov’s Minoration

Sudakov’s Minoration provides a weak converse to Dudley’s Inequality (there
exists no strong converse).

Theorem 1. Let (xt)t∈T be a Gaussian Process on a metric space (T, d) s.t.

‖xt − xs‖2 = d(t, s) ∀t, s ∈ T

Then

cǫ
√

log N(T, ǫ) ≤ E sup
t∈T

xt ≤ c

∫ ∞

0

√

log N(T, ǫ)dǫ ∀ǫ > 0

Remark 2. Note that we can start from an abtsract set T , and define the

metric d as above.

Proof. 1) Discretize T : Recall the greedy algorithm to construct an ǫ-net.
There exists N ⊆ T, |N | = N(T, ǫ) an ǫ-net of T s.t.

d(t, s) > ǫ ∀t, s ∈ N t 6= s

Then
E sup

t∈T
xt ≥ E sup

t∈N
xt

2) Comparison using Slepian’s Lemma: Compare (xt)t∈N with (yt)t∈N

where yt = ǫ√
2
gt and gt are i.i.d. standard Gaussian random variables.

We look at the increments :

‖yt − ys‖2 = ‖gt − gs‖2 =
√

‖gt‖2
2 + ‖gs‖2

2 =
√

2 s.t.
ǫ√
2

= ǫ

Slepian’s Lemma applies,

E sup
t∈T

xt ≥ E sup
t∈N

yt =
ǫ√
2

E max
k=1,2,...,|N |

gk ≤ cǫ
√

log |N |
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Lemma 3. Let g1, ..., gN be i.i.d. standard Gaussian random variables.

Then

c − 1
√

log N ≤ E max
k=1,..N

|gk| ≤
√

log N

Sections of convex sets: Let T ⊆ R
n be a convex set. We can improve

T by taking its random section T ∩ E where E is a random subspace of R
n

uniform in the Grassmanian of a given dimension. Now we wish to improve
the diameter of T .

Example 4. Thin long sausage.

Theorem 5 (Low M∗-estimate). Let T be a convex set in R
n and let E be

a random subspace of R
n of codimension k.

Then

diam(T ∩ E) ≤ c
l(T )√

k
with probability ≥ 1 − e

−k

where l(T ) is the mean width of T , l(T ) = E supt∈T 〈g, t〉, g ∈ R
n is a

standard Gaussian vector.

Exercise 6. Compute l(T ) for the sausage in the example above.

Proof : via random matrices. We can realize E as the kernel of an k × n
Gaussian Matrix G : R

n → R
k. Both E and kerG are uniformly distributed

in the Grassmanian Gn,n−k (by rotational invariance).

1) Discretize T using Sudakov’s Minoration : There exists ǫ-net N of T
with ǫ

√

log |N | ≤ l(T ). Thus

|N | ≤ e
cl(T )2/ǫ2 .
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2) Take x ∈ T ∩ ker G. We want to show ‖x‖2 .
l(T )√

k
.

3) Approximate x with y ∈ N ‖x − y‖2 ≤ ǫ

4) We know Gx = 0, thus Gy has to be small too,

‖Gy‖2 = ‖G(x − y)‖2 ≤ A

(one can always bound A ≤ ‖G‖ · ‖x − y‖2 .
√

n · ǫ)
5) On the other hand, for all y ∈ N

‖Gy‖2 ≥ B‖y‖2

6) Hence ‖y‖2 ≤ A
B

7) Since ‖x − y‖2 < ǫ, we have

‖x‖2 ≤ A

B
+ ǫ

Now choose ǫ = l(T )√
k

so that |N | ≤ e
c.

A) We will give a better bound on A. (See [1].) Set z, A, and the convex
set K to be:

z := x − y ∈ ǫBn
2 ∩ 2T =: K

A := max
z∈K

‖Gz‖2

Lemma 7. A ≤ l(T ) with probability 1 − e
−k.
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Proof. Discretize Bk
2 : find an 1

2 -net M of Bk
2 with |M | ≤ 5k. Then,

A ≤ 2 max
u∈M

〈Gz, u〉

(see Lecture 3.) And so,

P(A > t) ≤ 5k
P(max

z∈K
〈Gz, u〉 > t) (∗)

where a unit vector u is fixed. Then also,

〈Gz, u〉 = 〈z, G∗u〉 = 〈z, g〉

where g is a standard Gaussian in R
n. So the above expression (∗) is less than

or equal to 5k
P (maxz∈K〈g, z〉 > t). We next use Gaussian concentration of

measure. The map g 7−→ f(g) = maxz∈K〈g, z〉 is an ǫ-Lipschitz function
(z ∈ K ⊆ ǫBn

2 ). Thus

P(f − Ef > t) ≤ e−t2/2ǫ2

Ef ≤ max
x∈2T

〈g, z〉 = 2l(T )

P(A > 2l(T ) + t) ≤ 5k
e
−t2/2ǫ2

Choosing t = 10 l(T ) yields the result.

B)

Lemma 8. With probability at least 1 − e
−k,

‖Gy‖2 ≥ c
√

k‖y‖2 ∀y ∈ N

This shows that B ≈
√

k, which would complete the proof since by the above
lemma,

‖x‖2 ≤ A

B
+ ǫ .

l(T )√
k

Proof. 1) Fix y ∈ N . G
(

y
‖y‖2

)

is distribution identically with g, standard

Gaussian in R
k. Then

P(‖Gy‖2 < δ
√

k‖y‖2) = P(‖g‖2 ≤ δ
√

k)

≤ (cd)k
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which we will prove later.
2) Finally, we apply the union bound:

P(∃y ∈ N : ‖Gy‖ ≤ δ
√

k‖y‖) ≤ |N | · cδk ≤ e
−k

by choosing δ small.
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