Non-Asymptotic Theory of Random Matrices

Lecture 12: Sudakov’s Minoration
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1 Sudakov’s Minoration

Sudakov’s Minoration provides a weak converse to Dudley’s Inequality (there
exists no strong converse).

Theorem 1. Let (x¢)ier be a Gaussian Process on a metric space (T, d) s.t.
o — zglla = d(t,s) Vt,seT

Then

ce\/logN(T,e)gEsupxtgc/ V1eg N(T,e)de Ve >0
0

teT

Remark 2. Note that we can start from an abtsract set T, and define the
metric d as above.

Proof. 1) Discretize T: Recall the greedy algorithm to construct an e-net.
There exists N C T, |[N| = N(T,¢€) an e-net of T s.t.

d(t,s) >e Vt,seN t+#s

Then

Esup x; > Esup x;
teT teN

2) Comparison using Slepian’s Lemma: Compare (x¢)ieny with (yi)en
where y; = % gt and g are i.i.d. standard Gaussian random variables.
We look at the increments :

lye — ysllz = llge — gsll2 = /llgell3 + llgsl3 = V2 st. =e

S

Slepian’s Lemma applies,

€
Esupz; > Esupy; = —=E  max g < ce/log| N
teT teN V2 k=12, N o



Lemma 3. Let g1,...,gn be i.i.d. standard Gaussian random wvariables.
Then

c—14/log N < Ekr_nlaxN]gk] < /log N

Sections of convex sets: Let T' C R” be a convex set. We can improve
T by taking its random section T' N E where F is a random subspace of R"”
uniform in the Grassmanian of a given dimension. Now we wish to improve
the diameter of T

Example 4. Thin long sausage.

Theorem 5 (Low M*-estimate). Let T' be a convex set in R™ and let E be
a random subspace of R™ of codimension k.
Then
: ury . . &
diam(T N E) < c—= with probability >1—e

vk
where [(T) is the mean width of T, I(T) = Esup,cr(g,t), g € R" is a
standard Gaussian vector.

Exercise 6. Compute I(T) for the sausage in the example above.

Proof : via random matrices. We can realize E as the kernel of an k x n
Gaussian Matrix G : R® — R¥. Both E and ker G are uniformly distributed
in the Grassmanian G, ,,—i (by rotational invariance).

1) Discretize T' using Sudakov’s Minoration : There exists e-net N of T'
with ey/log [N| < I(T). Thus
N < ecl(T)? /e



2) Take z € T Nker G. We want to show ||z|2 < %

3) Approximate z with y € N ||z — yll2 < €

4) We know Gz = 0, thus Gy has to be small too,
1Gyllz = [|G(z —y)l2 < A

(one can always bound A < |G| - ||z —yl2 S v/ -€)
5) On the other hand, for all y € N

1Gyll2 = Bllyll2

6) Hence [yl < 4
7) Since ||z — y||2 < €, we have

A
lallz < % +e

Now choose € = % so that |NV| < e
A) We will give a better bound on A. (See [1].) Set z, A, and the convex
set K to be:

z=x—y € eByN2T = K

A = max ||Gz||2
zeK

Lemma 7. A < [(T) with probability 1 —e~*.



Proof. Discretize BY : find an J-net M of B with [M| < 5*. Then,

A < 2max(Gz,u)
ueM

(see Lecture 3.) And so,

P(A>t) < 5kP(gr1€2}:é{<Gz, u) >t)(x)

where a unit vector u is fixed. Then also,
(Gz,u) = (2,G"u) = (z,9)

where ¢ is a standard Gaussian in R™. So the above expression (x) is less than
or equal to 5*P (max,cx (g, z) > t). We next use Gaussian concentration of
measure. The map g — f(g9) = max.cx(g,2) is an e-Lipschitz function
(z € K C eBY). Thus

P(f —Ef >t) < e—t?/2¢
Ef < = 2[(T
f < max(g, z) = 2U(T)
P(A > 2U(T) +t) < 5Fe /2
Choosing t = 101(T') yields the result. O
B)
Lemma 8. With probability at least 1 —e™*,
IGyll2 = eVElyll2 VyeN

This shows that B ~ \/E, which would complete the proof since by the above
lemma,
A (T
lallz < 2 + e 1D

<3 N

Proof. 1) Fixy e N. G ( y ) is distribution identically with g, standard

llyll2
Gaussian in R¥, Then

P(|Gyll2 < 5VE|yll2) = P(|lgll2 < 6vk)
< (cd)k



which we will prove later.
2) Finally, we apply the union bound:

P(3y € N : Gyl < 5VE|yl) < V] - eo* < e
by choosing § small. d
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