Non-Asymptotic Theory of Random Matrices Lecture 12: Sudakov's Minoration

Lecturer: Roman Vershynin

Scribe: Blake Hunter

Thursday, February 13, 2007

1 Sudakov's Minoration

Sudakov's Minoration provides a weak converse to Dudley's Inequality (there exists no strong converse).

Theorem 1. Let $(x_t)_{t\in T}$ be a Gaussian Process on a metric space (T, d) s.t.

$$||x_t - x_s||_2 = d(t, s) \quad \forall t, s \in T$$

Then

$$c\epsilon\sqrt{\log N(T,\epsilon)} \le \mathbb{E}\sup_{t\in T} x_t \le c\int_0^\infty \sqrt{\log N(T,\epsilon)}d\epsilon \quad \forall \epsilon > 0$$

Remark 2. Note that we can start from an abtsract set T, and define the metric d as above.

Proof. 1) Discretize T: Recall the greedy algorithm to construct an ϵ -net. There exists $\mathcal{N} \subseteq T$, $|\mathcal{N}| = \mathcal{N}(T, \epsilon)$ an ϵ -net of T s.t.

$$d(t,s) > \epsilon \quad \forall t,s \in \mathcal{N} \quad t \neq s$$

Then

$$\mathbb{E}\sup_{t\in T} x_t \ge \mathbb{E}\sup_{t\in\mathcal{N}} x_t$$

2) Comparison using Slepian's Lemma: Compare $(x_t)_{t\in N}$ with $(y_t)_{t\in N}$ where $y_t = \frac{\epsilon}{\sqrt{2}}g_t$ and g_t are i.i.d. standard Gaussian random variables. We look at the increments :

$$||y_t - y_s||_2 = ||g_t - g_s||_2 = \sqrt{||g_t||_2^2 + ||g_s||_2^2} = \sqrt{2} \quad s.t. \quad \frac{\epsilon}{\sqrt{2}} = \epsilon$$

Slepian's Lemma applies,

$$\mathbb{E} \sup_{t \in T} x_t \ge \mathbb{E} \sup_{t \in \mathcal{N}} y_t = \frac{\epsilon}{\sqrt{2}} \mathbb{E} \max_{k=1,2,\dots,|\mathcal{N}|} g_k \le c\epsilon \sqrt{\log|\mathcal{N}|}$$

1

Lemma 3. Let $g_1, ..., g_N$ be *i.i.d.* standard Gaussian random variables. Then

$$c - 1\sqrt{\log N} \le \mathbb{E} \max_{k=1,\dots N} |g_k| \le \sqrt{\log N}$$

Sections of convex sets: Let $T \subseteq \mathbb{R}^n$ be a convex set. We can improve T by taking its random section $T \cap E$ where E is a random subspace of \mathbb{R}^n uniform in the Grassmanian of a given dimension. Now we wish to improve the diameter of T.

Example 4. Thin long sausage.

Theorem 5 (Low M^* -estimate). Let T be a convex set in \mathbb{R}^n and let E be a random subspace of \mathbb{R}^n of codimension k. Then

$$diam(T \cap E) \le c \frac{l(T)}{\sqrt{k}}$$
 with probability $\ge 1 - e^{-k}$

where l(T) is the mean width of T, $l(T) = \mathbb{E} \sup_{t \in T} \langle g, t \rangle$, $g \in \mathbb{R}^n$ is a standard Gaussian vector.

Exercise 6. Compute l(T) for the sausage in the example above.

Proof: via random matrices. We can realize E as the kernel of an $k \times n$ Gaussian Matrix $G : \mathbb{R}^n \to \mathbb{R}^k$. Both E and ker G are uniformly distributed in the Grassmanian $G_{n,n-k}$ (by rotational invariance).

1) Discretize T using Sudakov's Minoration : There exists ϵ -net \mathcal{N} of T with $\epsilon \sqrt{\log |\mathcal{N}|} \leq l(T)$. Thus

$$|\mathcal{N}| \le \mathsf{e}^{cl(T)^2/\epsilon^2}$$

- 2) Take $x \in T \cap \ker G$. We want to show $||x||_2 \lesssim \frac{l(T)}{\sqrt{k}}$. 3) Approximate x with $y \in \mathcal{N} ||x y||_2 \leq \epsilon$

4) We know Gx = 0, thus Gy has to be small too,

$$||Gy||_2 = ||G(x - y)||_2 \le A$$

(one can always bound $A \leq ||G|| \cdot ||x - y||_2 \lesssim \sqrt{n} \cdot \epsilon$) 5) On the other hand, for all $y \in \mathcal{N}$

$$||Gy||_2 \ge B||y||_2$$

6) Hence $||y||_2 \leq \frac{A}{B}$ 7) Since $||x - y||_2 < \epsilon$, we have

$$\|x\|_2 \le \frac{A}{B} + \epsilon$$

	-
	L
	L
	L

Now choose $\epsilon = \frac{l(T)}{\sqrt{k}}$ so that $|\mathcal{N}| \leq e^c$. A) We will give a better bound on A. (See [1].) Set z, A, and the convex set K to be:

$$z := x - y \in \epsilon B_2^n \cap 2T =: K$$
$$A := \max_{z \in K} \|Gz\|_2$$

Lemma 7. $A \leq l(T)$ with probability $1 - e^{-k}$.

Proof. Discretize B_2^k : find an $\frac{1}{2}$ -net M of B_2^k with $|M| \leq 5^k$. Then,

$$A \le 2 \max_{u \in M} \langle Gz, u \rangle$$

(see Lecture 3.) And so,

$$\mathbb{P}(A > t) \le 5^k \mathbb{P}(\max_{z \in K} \langle Gz, u \rangle > t) (*)$$

where a unit vector u is fixed. Then also,

$$\langle Gz, u \rangle = \langle z, G^*u \rangle = \langle z, g \rangle$$

where g is a standard Gaussian in \mathbb{R}^n . So the above expression (*) is less than or equal to $5^k \mathbb{P}(\max_{z \in K} \langle g, z \rangle > t)$. We next use Gaussian concentration of measure. The map $g \longmapsto f(g) = \max_{z \in K} \langle g, z \rangle$ is an ϵ -Lipschitz function $(z \in K \subseteq \epsilon B_2^n)$. Thus

$$\mathbb{P}(f - \mathbb{E}f > t) \le \mathbf{e} - t^2 / 2\epsilon^2$$
$$\mathbb{E}f \le \max_{x \in 2T} \langle g, z \rangle = 2l(T)$$
$$\mathbb{P}(A > 2l(T) + t) \le 5^k \mathbf{e}^{-t^2 / 2\epsilon^2}$$

Choosing t = 10 l(T) yields the result.

B)

Lemma 8. With probability at least $1 - e^{-k}$,

$$\|Gy\|_2 \ge c\sqrt{k}\|y\|_2 \quad \forall y \in \mathcal{N}$$

This shows that $B \approx \sqrt{k}$, which would complete the proof since by the above lemma,

$$||x||_2 \le \frac{A}{B} + \epsilon \lesssim \frac{l(T)}{\sqrt{k}}$$

Proof. 1) Fix $y \in \mathcal{N}$. $G\left(\frac{y}{\|y\|_2}\right)$ is distribution identically with g, standard Gaussian in \mathbb{R}^k . Then

$$\mathbb{P}(\|Gy\|_2 < \delta\sqrt{k}\|y\|_2) = \mathbb{P}(\|g\|_2 \le \delta\sqrt{k})$$
$$\le (cd)^k$$

which we will prove later.2) Finally, we apply the union bound:

$$\mathbb{P}(\exists y \in \mathcal{N} : \|Gy\| \leq \delta \sqrt{k} \|y\|) \leq |\mathcal{N}| \cdot c \delta^k \leq \mathrm{e}^{-k}$$

by choosing δ small.

References

 A. Litvak ; A. Pajor; M. Rudelson; N. Tomczak-Jaegermann. Smallest singular values of random matrices and geometry of random polytopes. *Advances in Mathematics*, 195:491, 2005.