Non-Asymptotic Theory of Random Matrices
 Lecture 12: Sudakov's Minoration

Lecturer: Roman Vershynin

Scribe: Blake Hunter

Thursday, February 13, 2007

1 Sudakov's Minoration

Sudakov's Minoration provides a weak converse to Dudley's Inequality (there exists no strong converse).

Theorem 1. Let $\left(x_{t}\right)_{t \in T}$ be a Gaussian Process on a metric space (T, d) s.t.

$$
\left\|x_{t}-x_{s}\right\|_{2}=d(t, s) \quad \forall t, s \in T
$$

Then

$$
c \epsilon \sqrt{\log N(T, \epsilon)} \leq \mathbb{E} \sup _{t \in T} x_{t} \leq c \int_{0}^{\infty} \sqrt{\log N(T, \epsilon)} d \epsilon \quad \forall \epsilon>0
$$

Remark 2. Note that we can start from an abtsract set T, and define the metric d as above.

Proof. 1) Discretize T : Recall the greedy algorithm to construct an ϵ-net. There exists $\mathcal{N} \subseteq T,|N|=N(T, \epsilon)$ an ϵ-net of T s.t.

$$
d(t, s)>\epsilon \quad \forall t, s \in \mathcal{N} \quad t \neq s
$$

Then

$$
\mathbb{E} \sup _{t \in T} x_{t} \geq \mathbb{E} \sup _{t \in \mathcal{N}} x_{t}
$$

2) Comparison using Slepian's Lemma: Compare $\left(x_{t}\right)_{t \in N}$ with $\left(y_{t}\right)_{t \in N}$ where $y_{t}=\frac{\epsilon}{\sqrt{2}} g_{t}$ and g_{t} are i.i.d. standard Gaussian random variables. We look at the increments :

$$
\left\|y_{t}-y_{s}\right\|_{2}=\left\|g_{t}-g_{s}\right\|_{2}=\sqrt{\left\|g_{t}\right\|_{2}^{2}+\left\|g_{s}\right\|_{2}^{2}}=\sqrt{2} \quad \text { s.t. } \quad \frac{\epsilon}{\sqrt{2}}=\epsilon
$$

Slepian's Lemma applies,

$$
\mathbb{E} \sup _{t \in T} x_{t} \geq \mathbb{E} \sup _{t \in \mathcal{N}} y_{t}=\frac{\epsilon}{\sqrt{2}} \mathbb{E} \max _{k=1,2, \ldots,|\mathcal{N}|} g_{k} \leq c \epsilon \sqrt{\log |\mathcal{N}|}
$$

Lemma 3. Let g_{1}, \ldots, g_{N} be i.i.d. standard Gaussian random variables. Then

$$
c-1 \sqrt{\log N} \leq \mathbb{E} \max _{k=1, . . N}\left|g_{k}\right| \leq \sqrt{\log N}
$$

Sections of convex sets: Let $T \subseteq \mathbb{R}^{n}$ be a convex set. We can improve T by taking its random section $T \cap E$ where E is a random subspace of \mathbb{R}^{n} uniform in the Grassmanian of a given dimension. Now we wish to improve the diameter of T.

Example 4. Thin long sausage.

Theorem 5 (Low M^{*}-estimate). Let T be a convex set in \mathbb{R}^{n} and let E be a random subspace of \mathbb{R}^{n} of codimension k.
Then

$$
\operatorname{diam}(T \cap E) \leq c \frac{l(T)}{\sqrt{k}} \quad \text { with probability } \geq 1-\mathrm{e}^{-k}
$$

where $l(T)$ is the mean width of $T, l(T)=\mathbb{E} \sup _{t \in T}\langle g, t\rangle, g \in \mathbb{R}^{n}$ is a standard Gaussian vector.

Exercise 6. Compute $l(T)$ for the sausage in the example above.
Proof : via random matrices. We can realize E as the kernel of an $k \times n$ Gaussian Matrix $G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$. Both E and $\operatorname{ker} G$ are uniformly distributed in the Grassmanian $G_{n, n-k}$ (by rotational invariance).

1) Discretize T using Sudakov's Minoration : There exists ϵ-net \mathcal{N} of T with $\epsilon \sqrt{\log |\mathcal{N}|} \leq l(T)$. Thus

$$
|\mathcal{N}| \leq \mathrm{e}^{c l(T)^{2} / \epsilon^{2}}
$$

2) Take $x \in T \cap \operatorname{ker} G$. We want to show $\|x\|_{2} \lesssim \frac{l(T)}{\sqrt{k}}$.
3) Approximate x with $y \in \mathcal{N}\|x-y\|_{2} \leq \epsilon$

4) We know $G x=0$, thus $G y$ has to be small too,

$$
\|G y\|_{2}=\|G(x-y)\|_{2} \leq A
$$

(one can always bound $A \leq\|G\| \cdot\|x-y\|_{2} \lesssim \sqrt{n} \cdot \epsilon$)
5) On the other hand, for all $y \in \mathcal{N}$

$$
\|G y\|_{2} \geq B\|y\|_{2}
$$

6) Hence $\|y\|_{2} \leq \frac{A}{B}$
7) Since $\|x-y\|_{2}<\epsilon$, we have

$$
\|x\|_{2} \leq \frac{A}{B}+\epsilon
$$

Now choose $\epsilon=\frac{l(T)}{\sqrt{k}}$ so that $|\mathcal{N}| \leq \mathrm{e}^{c}$.
A) We will give a better bound on A. (See [1].) Set z, A, and the convex set K to be:

$$
\begin{gathered}
z:=x-y \in \epsilon B_{2}^{n} \cap 2 T=: K \\
A:=\max _{z \in K}\|G z\|_{2}
\end{gathered}
$$

Lemma 7. $A \leq l(T)$ with probability $1-\mathrm{e}^{-k}$.

Proof. Discretize B_{2}^{k} : find an $\frac{1}{2}$-net M of B_{2}^{k} with $|M| \leq 5^{k}$. Then,

$$
A \leq 2 \max _{u \in M}\langle G z, u\rangle
$$

(see Lecture 3.) And so,

$$
\mathbb{P}(A>t) \leq 5^{k} \mathbb{P}\left(\max _{z \in K}\langle G z, u\rangle>t\right)(*)
$$

where a unit vector u is fixed. Then also,

$$
\langle G z, u\rangle=\left\langle z, G^{*} u\right\rangle=\langle z, g\rangle
$$

where g is a standard Gaussian in \mathbb{R}^{n}. So the above expression $(*)$ is less than or equal to $5^{k} \mathbb{P}\left(\max _{z \in K}\langle g, z\rangle>t\right)$. We next use Gaussian concentration of measure. The map $g \longmapsto f(g)=\max _{z \in K}\langle g, z\rangle$ is an ϵ-Lipschitz function $\left(z \in K \subseteq \epsilon B_{2}^{n}\right)$. Thus

$$
\begin{gathered}
\mathbb{P}(f-\mathbb{E} f>t) \leq \mathrm{e}-t^{2} / 2 \epsilon^{2} \\
\mathbb{E} f \leq \max _{x \in 2 T}\langle g, z\rangle=2 l(T) \\
\mathbb{P}(A>2 l(T)+t) \leq 5^{k} \mathrm{e}^{-t^{2} / 2 \epsilon^{2}}
\end{gathered}
$$

Choosing $t=10 l(T)$ yields the result.
B)

Lemma 8. With probability at least $1-\mathrm{e}^{-k}$,

$$
\|G y\|_{2} \geq c \sqrt{k}\|y\|_{2} \quad \forall y \in \mathcal{N}
$$

This shows that $B \approx \sqrt{k}$, which would complete the proof since by the above lemma,

$$
\|x\|_{2} \leq \frac{A}{B}+\epsilon \lesssim \frac{l(T)}{\sqrt{k}}
$$

Proof. 1) Fix $y \in \mathcal{N} . G\left(\frac{y}{\|y\|_{2}}\right)$ is distribution identically with g, standard Gaussian in \mathbb{R}^{k}. Then

$$
\begin{aligned}
\mathbb{P}\left(\|G y\|_{2}<\delta \sqrt{k}\|y\|_{2}\right) & =\mathbb{P}\left(\|g\|_{2} \leq \delta \sqrt{k}\right) \\
& \leq(c d)^{k}
\end{aligned}
$$

which we will prove later.
2) Finally, we apply the union bound:

$$
\mathbb{P}(\exists y \in \mathcal{N}:\|G y\| \leq \delta \sqrt{k}\|y\|) \leq|\mathcal{N}| \cdot c \delta^{k} \leq \mathrm{e}^{-k}
$$

by choosing δ small.

References

[1] A. Litvak ; A. Pajor; M. Rudelson; N. Tomczak-Jaegermann. Smallest singular values of random matrices and geometry of random polytopes. Advances in Mathematics, 195:491, 2005.

