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1 Application of Low M?-estimate

Recall the Low M?-estimate from the previous lecture:

Let T ⊆ Rnbe convex and symmetric,

and let E be a random subspace of Rn , with codimension k .

Then,

diam(T ∩ E ) ≤ C
l(T )√

k
, with high probability.

Here, l(T ) = E sup
t∈T

< g, t >, where g is a gaussian vector.

The following Example shows an application of the Low M?-estimate.

Example 1 (lp-balls). Let Bn
p =Ball(lnp ) = {x ∈ Rn; ||x||p ≤ 1}), where

1 < p ≤ 2 (note that p cannot be 1 here). We want to evaluate how ”spiky”,
or how ”round” Bn

p is. We answer this question by examining the radii
of the inscribed and circumscribed balls. The closer the two radii are, the
rounder Bn

p is.

Figure 1: Inscribed (rBn
2 ), Cir-

cumscribed (Bn
2 ) balls of Bn

p .

We can form the inequality

||x||2 ≤ ||x||p ≤ n
1
p
− 1

2 . (Check)

⇒ r ·Bn
2 ⊆ Bp ⊆ Bn

2 .

Here, r = n
1
2
− 1

p → 0 as n →∞.
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This result implies that Bn
p is not round. However, it is easily seen

that the ”spikes” are in the coordinate directions, and our intuition is that
there are only 2n spikes (which are not exponentially many), so they can be
eliminated. In fact,

sup
t∈Bn

p

< g, t >= sup
t∈Ball(lnp )

< g, t >= ||g||(lnp )∗ = ||g||lnq ,

where
1
p

+
1
q

= 1 .

Here (lnp )∗ denotes the dual space of (lnp ). Therefore,

l(Bn
p ) = E||g||q = E(

n∑

i=1

|gi|q)1/q

≤ (E
n∑

i=1

|gi|q)1/q (Jensen′s Inequality)

= n1/q(E|gi|q)1/q.

Now we apply Low M?-estimate: for k = δn (0 < δ < 1),

diam(Bn
p ∩ E ) ≤ cq

n1/q

√
δn

= Cq,δn
1
q
− 1

2 = Cq,δr , (1)

with high probability. The result implies that the intersection of E and Bn
p

is likely to be small when n is large (r → 0 as n →∞).

From this result follows the Corollary:
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Corollary 2 (Almost round sections of lp −Balls).

Let 1 < p ≤ 2 , 0 < δ < 1 .

Also let E be a random subspace of Rnwith codimension δn.

Then r(Bn
2 ∩ E ) ⊆ (Bn

p ∩ E ) ⊆ Cq,δr(Bn
2 ∩ E ), with high probability .

This can be expressed equivalently as

Cq,δ||x||2 ≤ r||x||p ≤ ||x||2 ∀x ∈ E.

This implies ||x||p ∼ ||x||2, that is those two norms are equivalent. Since
this holds with high probability, the ball Bn

p is almost round.
However, in the case when p = 1, the Low M?-estimate turns out not to be
good enough.

Example 3 (l1-ball).

Let r =
1√
n

, q = ∞.

l(B1) = E||g||∞ ∼
√

log n.

Applying Low M?-estimate gives

diam(T ∩ E ) ≤ c
√

log n√
n

= cq

√
log n · r (2)

Compared with (1), we observe that there is some discrepancy in this
estimate (

√
log n). Therefore, Low M?-estimate fails to produce nice sec-

tions of Bn
1 . To deal with this problem, we want to replace mean width by a

better ”size” of T . In order to do so, the Volume Ratio Theorem in the next
section provides an estimate with respect to the Volume. This approach via
Volume and entropy is originally seen in [1].

2 Volume Ratio Theorem and Entropy Theorem

Theorem 4 (Volume Ratio Theorem). Let T ⊂ Rn be a convex, symmetric
set, and Bn

2 ⊆ T. The Volume Ratio is defined as

V (T ) =
(

Vol(T )
Vol(Bn

2 )

)1/n

.
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Also let

E be a random subspace of Rnwith codimension δn.

Then, with probability ≥ 1− e−n,

diam(T ∩ E ) ≤ C (V (T ), δ).

Remarks:

1. C(V (T ), δ) ≤ (CV (T ))1/δ.

2. Compare with Low M?-estimate: From Uryson’s Inequality, V (T ) ≤
l(T )√

n
. Therefore this is a better estimate.

Notice that the Theorem enables us to eliminate the
√

log n term in (2).
Details on Volume Ratio Theorem can be found in [2]. Instead of proving
this result, we state a stronger result, which replaces volume with entropy;

Theorem 5 (Entropy). Let T ⊂ Rn be a convex, symmetric set. Suppose

N(T, Bn
2 ) ≤ V n for some V > 1 .

Also let E be a random subspace of codimension δn. Then, with probability
1− e−n,

diam(T ∩ E ) ≤ C (V , δ).
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Remark that Volume Ratio Theorem follows from the Entropy Theorem:

Vol(T )
Vol(Bn

2 )
≤ N(T,Bn

2 ) ≤ Vol(T + Bn
2 )

Vol(Bn
2 )

(lecture 6)

≤ Vol(2T )
Vol(Bn

2 )
(Bn

2 ⊆ T )

= 2n Vol(T )
Vol(Bn

2 )
.

From this it follows that

(V (T ))n ≤ N(T, Bn
2 ) ≤ (2V (T ))n.

Therefore, we conclude that the Volume Ratio Theorem can be derived from
the Entropy Theorem. We will therefore prove the Entropy Theorem. The
idea is as follows;

We want to repel the subspace
E from the spikes. The idea is
to discretize the tentacles and
show that they can be elimi-
nated (Lecture 14).

In order to prove the Entropy Theorem, we begin with the Small Ball
Probability:

Lemma 6 (Small Ball Probability). A standard Gaussian Vector g in Rn

is unlikely to be in a Euclidean ball with radius ¿ √
n.

• Dim 1. P(|g − v1 | < ε) ∼ ε, ∀ε > 0 , v1 ∈ R. (Exercise)

• Dim n. P(||g −V ||2 < ε
√

n) ≤ (c′ε)n , ∀ε > 0 ,V ∈ Rn .

To prove Dimension n, we state the following Lemma;
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Lemma 7 (Tensorization Lemma). Let X be a random variable. Assume

P(|X − V | < ε) ≤ Cε, ∀ε > 0, V ∈ R.

Let X1, X2, · · · , Xn be independent, identically distributed copies of X. Then

P(
n∑

j=1

|Xj − Vj | < ε2n) ≤ (C ′ε)n, ∀ε > 0, Vi ∈ R.

Note that this Lemma immediately implies the Dimension n of Small
Ball probability.
Proof : Let |Xj − Vj | = Yj .

P(
∑

j

Y 2
j < ε2n) = P(n− 1

ε2

∑

j

Y 2
j > 0)

= P(exp(n− 1
ε2

∑

j

Y 2
j ) > 1)

≤ E exp(n
1
ε2

∑

j

Y 2
j ) (Markov′s Inequality)

= en
n∏

j=1

exp(−Y 2
j /ε2). (>)(Independence)

Here, since

if X ≥ 0 , then EX =
∫ ∞

0
P(X > s)ds,
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exp(−Y 2
j /ε2) =

∫ ∞

0
P(exp(−Y 2

j /ε2) > s)ds

=
∫ 1

0
P(exp(−Y 2

j /ε2) > s)ds. (exp(−Y 2
j /ε2) ≤ 1)

Applying change of variables s = e−u2
, then x ∈ [0, 1] ⇒ u ∈ [0,∞], and

ds = −2ue−u2
. Therefore we have

exp(−Y 2
j /ε2) =

∫ ∞

0
P(Yj < εu)2ue−u2

du ≤ C ′′ε.

Here we used used Dimension 1 in the last inequality (P(Yj < εu) = P(|X −
Vi| < εu) ≤ Cεu). Using this inequality in (>) yields

P(
∑

j

Y 2
j > ε2n) ≤ en(C ′′ε)n = (C ′′eε)n,

which completes the proof of the Tensorization Lemma. In the next lecture
we will apply the small ball probability to complete the proof of the Entropy
Theorem.
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