Non-Asymptotic Theory of Random Matrices
 Lecture 14: SECTIONS OF CONVEX SETS VIA ENTROPY AND VOLUME II

Lecturer: Roman Vershynin
Scribe: Igor Rumanov

Tuesday, February 20, 2007

Theorem 1 (Entropy Theorem). Let set $T \in \mathbb{R}^{n}$ be convex, covering number $N\left(T, B_{2}^{n}\right) \leq V^{n}$, where V is the volume ratio - see Lecture 13; consider E : random subspace of \mathbb{R}^{n} of codimension δn. Then :

$$
\operatorname{diam}(T \cap E) \leq C(V, \delta)
$$

> Realize $E=$ ker G, where $G: k \times n-$ Gaussian matrix $\left(\mathbb{R}^{n} \rightarrow \mathbb{R}^{k}\right)$ $(k=\delta n)$
gaussian vector

1. $(\operatorname{dim} n)$ In $\operatorname{dim} n$ the inequality holds : $\mathbb{P}\left(\|g-v\|_{2}<\varepsilon \sqrt{n}\right) \leq\left(C^{\prime} \varepsilon\right)^{n}$ for all $\varepsilon>0$, all $v \in \mathbb{R}^{n}$ (this was proved before)
(volume of ε-ball $\sim \varepsilon^{n}$, tentacles do not change the order of value of the
volume of the set)
2. Replace gaussian vector g by E (let the above vector $v=0$)

Proposition 2 ((Distance to a subspace): Very sharp form [1]).

> Let E be random subspace of \mathbb{R}^{n} of codim k Let $x_{0} \in S^{n-1}$. Then :
(1) $\left(\mathbb{E} \operatorname{dist}\left(x_{0}, E\right)^{2}\right)^{1 / 2}=\sqrt{\frac{k}{n}}$
(should interpolate between cases $k=0$ (dist. $\sim \frac{1}{\sqrt{n}}$) and $k=n-1$ (dist. ~1))
(2) $\mathbb{P}\left(\operatorname{dist}\left(x_{0}, E\right)<\varepsilon \sqrt{\frac{k}{n}}\right) \leq(C \varepsilon)^{k}=C^{k} \varepsilon^{\prime} \sqrt{\frac{n}{k}}$ for $\varepsilon>0$

Proof: (1) Exercise
(2) (Weaker estimate) Let $E=\operatorname{Ker} G\left(G\right.$ - a random map $\left.\mathbb{R}^{n} \rightarrow \mathbb{R}^{k}\right)$, then

$$
\operatorname{dist}\left(x_{0}, \operatorname{Ker} G\right)=\inf _{x \in K e r G}\left\|x_{0}-x\right\|_{2} \leq \inf _{x \in K e r G} \frac{\left\|G\left(x_{0}-x\right)\right\|_{2}}{\|G\|}=\frac{\left\|G x_{0}\right\|_{2}}{\|G\|} \leq ?
$$

Estimate numerator and denominator of the last fraction:
(a) for $A:=\{\|G\| \leq 2 \sqrt{n}\}$, we have $\mathbb{P}(A) \leq 1-e^{-c n}$ (see Lecture 6)
(b) $G x_{0}$ is a standard Gaussian vector in $\mathbb{R}^{k}\left(x_{0}\right.$ - unit vector $)$

By ($\operatorname{dim} n)$ inequality above,

$$
\begin{equation*}
\mathbb{P}\left(\left\|G x_{0}\right\|<\varepsilon \sqrt{k}\right) \leq\left(C^{\prime} \varepsilon\right)^{k} \tag{*}
\end{equation*}
$$

(if ε is small enough, $(C \varepsilon)^{k}$ may be $<e^{-c n}$).

Consider $\mathbb{P}_{A}=$ probability conditional on A :

$$
\begin{gathered}
\mathbb{P}_{A}(B)=\frac{\mathbb{P}(B \cap A)}{\mathbb{P}(A)}, \\
\mathbb{P}_{A}\left(\frac{\left\|G x_{0}\right\|_{2}}{\|G\|}<\varepsilon \sqrt{\frac{k}{n}}\right) \leq \mathbb{P}_{A}\left(\left\|G x_{0}\right\|_{2}<\frac{\varepsilon}{2} \sqrt{k}\right) \leq\left(C^{\prime} \frac{\varepsilon}{2}\right)^{k} \quad \text { by }(*)
\end{gathered}
$$

We proved the result for \mathbb{P}_{A} rather than \mathbb{P}.
But A is "big" event $(\mathbb{P}(A) \underset{n \rightarrow \infty}{\longrightarrow} 1$).

Proof of Entropy Theorem:
Goal: $T \cap E \leq \frac{1}{\varepsilon} B_{2}^{n}$ for $\varepsilon=\varepsilon(V, \delta) \Longleftrightarrow \varepsilon T \cap E \leq B_{2}^{n}$ - open ball, or

$$
\left(\varepsilon T \cap S^{n-1}\right) \cap E=\varnothing
$$

(here $\varepsilon>0$ - parameter)
Discretize the tentacles:
Choose an ε-net \mathcal{N} of $\varepsilon T \cap S^{n-1}$, then the cardinality

$$
|\mathcal{N}|=N\left(\varepsilon T \cap E, \varepsilon B_{2}^{n}\right) \leq N\left(\varepsilon T, \varepsilon B_{2}^{n}\right)=N\left(T, B_{2}^{n}\right) \leq V^{n}
$$

- Fix an $x_{0} \in \mathcal{N}$. The subspace E is far from x_{0} with high probability:

$$
\mathbb{P}_{A}\left(\operatorname{Ball}\left(x_{0}, \varepsilon\right) \cap E \neq \varnothing\right) \leq\left(C \varepsilon \sqrt{\frac{n}{k}}\right)^{k}=\left(\frac{C \varepsilon}{\sqrt{\delta}}\right)^{k}
$$

- Union bound: E is far from all $x_{0} \in \mathcal{N}$:
$\mathbb{P}_{A}\left(\forall x_{0} \epsilon \mathcal{N}, \operatorname{Ball}\left(x_{0}, \varepsilon\right) \cap E=\varnothing\right)>1-|\mathcal{N}|\left(\frac{C \varepsilon}{\sqrt{\delta}}\right)^{k}=1-V^{n}\left(\frac{C \varepsilon}{\sqrt{\delta}}\right)^{\delta n} \geq 1-e^{-n}$
for suitable $\varepsilon=\varepsilon(V, \delta)$
Since $\mathbb{P}(A)>1-e^{-c n}$ it follows that

$$
\mathbb{P}\left(\left(\varepsilon T \cap S^{n-1}\right) \cap E=\varnothing\right)>1-e^{-c n}
$$

(check !)

Ex.: "Sausage" :

\qquad

We have
Theorem 3 (Volume Ratio Theorem: [5], Ch.6). Let $T \in \mathbb{R}^{n}$, $B_{2}^{n} \in T$

$$
\begin{gathered}
V(T)=\left(\frac{\operatorname{Vol}(T)}{\operatorname{Vol}\left(B_{2}^{n}\right)}\right)^{1 / n} \\
\operatorname{diam}(T \cap E) \leq C(V(T), \delta)
\end{gathered}
$$

For the set T with tentacles above one has
Inscribed ball: radius 1.
Circumcribed ball: radius $C(V(T, \delta)$, hopefully $O(1)$
$\Rightarrow T \cap E$ is "almost spherical".

Let us consider balls for various norms of n-dimensional space.
Ex.: $\quad B_{1}^{n}=\operatorname{Ball}\left(l_{1}^{n}\right)$

-e2
Inscribed ball: $\frac{1}{\sqrt{n}}$ Circumscribed
ball: 1
What is the volume $\operatorname{Vol}\left(B_{1}^{n}\right)=$?
Ball $B_{1}^{n}=\operatorname{conv}\left(\pm e_{i}\right)_{1}^{n}$ where e_{i} : coordinate basis, (conv - convex hull) So $\operatorname{Vol}\left(B_{1}^{n}\right)=2^{n} \cdot \operatorname{Vol}\left(\right.$ Simplex $\left.x_{n}\right)$

where Simplex $x_{n}=\left\{x \in \mathbb{R}^{n} ;\right.$ all $\left.x_{i} \geq 0, \sum x_{i} \leq 1\right\}$,

$$
\begin{gathered}
\operatorname{Vol}\left(\text { Simplex }_{n}\right)=\frac{1}{n} \operatorname{Vol}\left(\text { Simplex }_{n-1}\right)=\frac{1}{n!} \\
\Rightarrow \quad \operatorname{Vol}\left(\mathrm{B}_{1}^{n}\right)=\frac{2^{n}}{n!}
\end{gathered}
$$

We have also

$$
\begin{aligned}
& \operatorname{Vol}\left(B_{2}^{n}\right) \geq \operatorname{Vol}\left(\frac{1}{\sqrt{n}} B_{\infty}^{n}\right)=\left(\frac{2}{\sqrt{n}}\right)^{n} \\
& \quad \uparrow \\
& (\operatorname{see}[[5]])
\end{aligned}
$$

Apply Volume Ratio Theorem for $T=\sqrt{n} B_{1}^{n}$; then $B_{2}^{n} \leq T, \operatorname{Vol}(T)=(\sqrt{n})^{n} \frac{2^{n}}{n!}$, and

$$
V(T)=\left((\sqrt{n})^{n} \frac{2^{n}}{n!} \cdot\left(\frac{\sqrt{n}}{2}\right)^{n}\right)^{1 / n}=\left(\frac{n^{n}}{n!}\right)^{1 / n} \leq \text { const }
$$

(use Stirling formula: $n!\approx n^{n} e^{-n} \sqrt{2 \pi n}$)

Corollary 4 ([4]). : For every $0<\delta<1$, a random subspace E of \mathbb{R}^{n} of codimension δn satisfies with probability $1-e^{-n}$:

$$
B_{2}^{n} \cap E \subseteq\left(\sqrt{n} B_{1}^{n} \cap E\right) \subseteq C(\delta) \cdot B_{2}^{n} \cap E
$$

Equivalently, (let $\left.c(\delta)=\frac{1}{C(\delta)}\right)$,

$$
\begin{equation*}
c(\delta)\|x\|_{2} \leq \frac{1}{\sqrt{n}}\|x\|_{1} \leq\|x\|_{2} \tag{*}
\end{equation*}
$$

for all $x \in E$.

Corollary 5 (Kashin's Splitting [4]). : \exists an orthogonal decomposition

$$
\mathbb{R}^{n}=E \oplus F
$$

into two $n / 2$ - dimensional subspaces, s.t. (*) holds for both E and F.

Proof: Apply the corrollary to E and F (both are random, uniformly distributed).

1 Applications in Computer Science

Usually $\|x\|_{1}$ is easier to compute than $\|x\|_{2}$
Questions of applicability of [V. R. T.]: [5]
For subgaussian matrices (e.g. Bernoulli):

- should be true for $E=\operatorname{ker} G$ (try - where is the difficulty ?)
- true for $E=\operatorname{ImG}[[7]]$
- Dependence on δ ?
- In V.R.T. : must in general be exponential [[5]]
- For B_{1}^{n} : polynomial

$$
C(\delta) \leq c \sqrt{\frac{1}{\delta} \log \frac{1}{\delta}}
$$

(best possible estimate) [[2]] - gaussian case

- Subgaussian case in general - OPEN
- Bernoulli case - polynomial:

$$
C(\delta) \leq \delta^{-5 / 2} \log \frac{1}{\delta}
$$

(see [[6]])
Open problem: Explicit constructions of E in Kashin's Theorem (what is an appropriate basis ?)
Best known case: $\operatorname{dim}(E)=n^{1-\delta}$ (rather than $\left.(1-\delta) n\right)$
See [P.Indyk: "Uncertainty Principles ..." [3]].

References

[1] Shiri Artstein. Proportional concentration phenomena on the sphere. Israel J. Math, 132:337, 2002.
[2] Gluskin E. D. Garnaev A.Y. On widths of the euclidean ball. Dokl. Akad. Nauk USSR (Russian). English transl. in Sov. Math. Dokl. 30 (1984), Math.Review MR0759962, 277:1048, 1984.
[3] P. Indyk. Uncertainty principles, extractors, and explicit embeddings of 12 into 11. ECCC Report TR06-126, 2006.
[4] B. Kashin. The widths of certain finite-dimensional sets and classes of smooth functions. Izv. Akad. Nauk SSSR Ser. Mat. (Russian), 41:334, 1977.
[5] Gilles Pisier. The Volume of Convex Bodies and Banach Space Geometry. Cambridge University Press, 1999.
[6] Shiri Artstein-Avidan; Omer Friedland; Vitali D. Milman; Sasha Sodin. Polynomial bounds for large bernoulli sections of the cross polytope. Israel J. Math, 156:000, 2006.
[7] A. Litvak ; A. Pajor; M. Rudelson; N. Tomczak-Jaegermann. Smallest singular values of random matrices and geometry of random polytopes. Advances in Mathematics, 195:491, 2005.

