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Theorem 1 (Entropy Theorem ). Let set T ∈ R
n be convex, cov-

ering number N(T,Bn
2 ) ≤ V n, where V is the volume ratio - see Lecture 13;

consider E: random subspace of R
n of codimension δn. Then :

diam(T ∩ E) ≤ C(V, δ)

Tentacles: εT ∩ Sn−1

E

O

T

S
n−1

Realize E = ker G,
where G : k×n - Gaus-
sian matrix (Rn → R

k)
(k = δn)

gaussian vector
↓

1. (dim n) In dim n the inequality holds : P(||g − v||2 < ε
√

n) ≤ (C ′ε)n for
all ε > 0, all v ∈ R

n (this was proved before)
(volume of ε-ball ∼ εn, tentacles do not change the order of value of the
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volume of the set)

2. Replace gaussian vector g by E (let the above vector v = 0)

Proposition 2 ((Distance to a subspace): Very sharp form [1]).

0

E

x

Let E be random sub-
space of R

n

of codim k
Let x0 ∈ Sn−1. Then :

(1) (E dist(x0, E)2)1/2 =
√

k
n

(should interpolate between cases k = 0 (dist. ∼ 1√
n
) and k = n − 1

(dist. ∼ 1) )

(2) P(dist(x0, E) < ε
√

k
n) ≤ (Cε)k = Ckε′

√

n
k for ε > 0

Proof: (1) Exercise
(2) (Weaker estimate) Let E = KerG (G - a random map R

n → R
k), then

dist(x0,KerG) = inf
x∈KerG

||x0 − x||2 ≤ inf
x∈KerG

||G(x0 − x)||2
||G|| =

||Gx0||2
||G|| ≤?

Estimate numerator and denominator of the last fraction:

(a) for A : = {||G|| ≤ 2
√

n}, we have P(A) ≤ 1 − e−cn (see Lecture 6)
(b) Gx0 is a standard Gaussian vector in R

k (x0 - unit vector)

By (dim n) inequality above,

P(||Gx0|| < ε
√

k) ≤ (C ′ε)k (∗)
(if ε is small enough, (Cε)k may be < e−cn).
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Consider PA = probability conditional on A :

PA(B) =
P(B ∩ A)

P(A)
,

PA

(

||Gx0||2
||G|| < ε

√

k

n

)

≤ PA

(

||Gx0||2 <
ε

2

√
k
)

≤
(

C ′ ε

2

)k
by (∗)

We proved the result for PA rather than P.
But A is ”big” event (P(A) −→

n→∞

1).

Proof of Entropy Theorem:

Goal: T ∩ E ≤ 1
εBn

2 for ε = ε(V, δ) ⇐⇒ εT ∩ E ≤ Bn
2 - open ball, or

(εT ∩ Sn−1) ∩ E = ∅

(here ε > 0 - parameter)
Discretize the tentacles:
Choose an ε-net N of εT ∩ Sn−1, then the cardinality

|N | = N(εT ∩ E, εBn
2 ) ≤ N(εT, εBn

2 ) = N(T,Bn
2 ) ≤ V n

• Fix an x0 ∈ N . The subspace E is far from x0 with high probability:

PA (Ball(x0, ε) ∩ E 6= ∅) ≤
(

Cε

√

n

k

)k

=

(

Cε√
δ

)k

• Union bound: E is far from all x0 ∈ N :

PA (∀x0ǫN , Ball(x0, ε) ∩ E = ∅) > 1−|N |
(

Cε√
δ

)k

= 1−V n

(

Cε√
δ

)δn

≥ 1−e−n

for suitable ε = ε(V, δ)
Since P(A) > 1 − e−cn it follows that

P
(

(εT ∩ Sn−1) ∩ E = ∅
)

> 1 − e−cn

(check !)
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Ex.: ”Sausage” :

We have

Theorem 3 (Volume Ratio Theorem: [5], Ch.6). Let T ∈ R
n, Bn

2 ∈ T

V (T ) =

(

Vol(T )

Vol(Bn
2 )

)1/n

diam(T ∩ E) ≤ C(V (T ), δ)

For the set T with tentacles above one has
Inscribed ball: radius 1.
Circumcribed ball: radius C(V (T, δ), hopefully O(1)
⇒ T ∩ E is ”almost spherical”.

Let us consider balls for various norms of n-dimensional space.
Ex.: Bn

1 = Ball(ln1 )
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1

1

e1

e2

−e1

−e2 Inscribed ball: 1√
n

Circumscribed
ball: 1

What is the volume Vol(Bn
1 ) = ?

Ball Bn
1 = conv(±ei)

n
1 where ei: coordinate basis, (conv - convex hull)

So Vol(Bn
1 ) = 2n · Vol(Simplexn)

0

where Simplexn = {x ∈ R
n; all xi ≥ 0,

∑

xi ≤ 1},

Vol(Simplexn) =
1

n
Vol(Simplexn−1) =

1

n!

⇒ Vol(Bn
1 ) = 2n

n!
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We have also

Vol(Bn
2 ) ≥ Vol

(

1√
n

Bn
∞

)

=

(

2√
n

)n

↑
(see [ [5]] )

1
1
−
n

1/2

Apply Volume Ratio Theorem for T =
√

nBn
1 ;

then Bn
2 ≤ T , Vol(T ) = (

√
n)n 2n

n! , and

V (T ) =

(

(
√

n)n
2n

n!
·
(√

n

2

)n)1/n

=

(

nn

n!

)1/n

≤ const

(use Stirling formula: n! ≈ nne−n
√

2πn)

Corollary 4 ( [4]). : For every 0 < δ < 1, a random subspace E of R
n of

codimension δn satisfies with probability 1 − e−n:

Bn
2 ∩ E ⊆ (

√
nBn

1 ∩ E) ⊆ C(δ) · Bn
2 ∩ E
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C(δ)

1

Equivalently, (let c(δ) = 1
C(δ) ),

c(δ)||x||2 ≤ 1√
n
||x||1 ≤ ||x||2 (∗)

for all x ∈ E.

Corollary 5 ( Kashin’s Splitting [4]). : ∃ an orthogonal decomposition

R
n = E ⊕ F

into two n/2 - dimensional subspaces, s.t. (*) holds for both E and F .

Proof: Apply the corrollary to E and F (both are random, uniformly dis-
tributed).

1 Applications in Computer Science

Usually ||x||1 is easier to compute than ||x||2

Questions of applicability of [V. R. T.]: [5]
For subgaussian matrices (e.g. Bernoulli):
- should be true for E = ker G (try - where is the difficulty ?)
- true for E = ImG [ [7]]
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• Dependence on δ ?
- In V.R.T. : must in general be exponential [ [5]]
- For Bn

1 : polynomial

C(δ) ≤ c

√

1

δ
log

1

δ

(best possible estimate) [ [2]] - gaussian case
- Subgaussian case in general - OPEN
- Bernoulli case - polynomial:

C(δ) ≤ δ−5/2 log
1

δ

(see [ [6]])

Open problem: Explicit constructions of E in Kashin’s Theorem (what is an
appropriate basis ?)
Best known case: dim(E) = n1−δ (rather than (1 − δ)n)
See [P.Indyk: ”Uncertainty Principles ...” [3]].
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