Non-Asymptotic Theory of Random Matrices
Lecture 14: SECTIONS OF CONVEX SETS VIA
ENTROPY AND VOLUME II
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Theorem 1 (Entropy Theorem ). Let set T € R™ be convez, cov-
ering number N (T, BY) < V"™, where V is the volume ratio - see Lecture 13;
consider E: random subspace of R™ of codimension én. Then :

diam(T N E) < C(V,0)

Tentacles: TN S~ 1

Realize E = kerG,
where G : kxn - Gaus-
sian matrix (R — RF)
(k=dn)

gaussian vector
!
1. (dimn) In dimn the inequality holds : P(||g — v||]2 < ey/n) < (C’e)™ for

all € > 0, all v € R™ (this was proved before)
(volume of e-ball ~ ", tentacles do not change the order of value of the



volume of the set)

2. Replace gaussian vector g by E (let the above vector v = 0)

Proposition 2 ((Distance to a subspace): Very sharp form [1]).

E Let E be random sub-
space of R™
of codim k
Let zg € S 1. Then :

(1) (E dist(zo, E)?)Y/? = \/%

(should interpolate between cases k = 0 (dist. ~ ﬁ) and k = n —1
(dist. ~1) )
(2) Pdist(x0, B) < £\/%) < (Ceff = CP/\/T fore >0

Proof: (1) Ezercise
(2) (Weaker estimate) Let F = KerG (G - a random map R” — RF), then

IG(o — )l _ [IGollz _,

dist(xo, KerG) = inf [lwg— x|l < inf -
ist(wo, KerG) = pf Moo =allz<_ il - 1G]

Estimate numerator and denominator of the last fraction:

(a) for A : = {||G|| < 2y/n}, we have P(A) <1 — e " (see Lecture 6)
(b) Gz is a standard Gaussian vector in R¥ (g - unit vector)

By (dimn) inequality above,

P(||Gaol| < eVE) < (C'e)" (%)

7C’n)‘

(if € is small enough, (Ce)¥ may be < e



Consider P4 = probability conditional on A :

Pa(B) = %,

[|Gzoll2 \/E £ €\F
A( e <V gPA(\|GxO|\2<2¢E)§(02) by (%)

We proved the result for P4 rather than P.
But A is "big” event (P(A) — 1).

Proof of Entropy Theorem:

Goal: TN E < 1By for e = ¢(V,8) <= eT NE < BY - open ball, or

(eTNS"NNE=0

(here € > 0 - parameter)
Discretize the tentacles:
Choose an e-net A/ of €T'N 8™, then the cardinality

NV|=N(TNE,eBy) < N(eT,eBY) = N(T,By) < V"

e Fix an zg € N. The subspace E is far from zy with high probability:

P4 (Ball(zg,e) N E # @) < <C€\/%>k - (%)k

e Union bound: E is far from all g € N :

Ce\F Cce\"
P4 (VzoeN, Ball(zg,e) N E = &) > 1—|N]| 7 = 1-v" 7

for suitable ¢ = ¢(V, )
Since P(A) > 1 — e~ " it follows that
P((eTnS" HNE=2)>1—e "
(check !)



Ez.: ”Sausage” :

We have

Theorem 3 (Volume Ratio Theorem: [5|, Ch.6). LetT € R", B} € T

[ Vol(T) \''"
v = (o)

diam(T N E) < C(V(T), )

For the set T" with tentacles above one has
Inscribed ball: radius 1.

Circumcribed ball: radius C(V (T, ), hopefully O(1)
= T N E is "almost spherical”.

Let us consider balls for various norms of n-dimensional space.
Ez.: B} = Ball(1})



Inscribed ball: -
—_ vn
e 2 Circumscribed
ball: 1

What is the volume Vol(B}) =7
Ball B}" = conv(=+e;)} where e;: coordinate basis, (conv - convex hull)
So Vol(B}) = 2™ - Vol(Simplex,,)

where Simplex, = {x € R"; all z; > 0, > x; < 1},

1 1
Vol(Simplex,) = —Vol(Simplexyn—1) = —
n n!

= Vol(BY) = Z;

— nl




We have also

Vol(B) > Vol (%B@ - <%)”
(Se<I [5]])

—1/2
n 1

Apply Volume Ratio Theorem for T'= \/nB;
then By < T, Vol(T) = (v/n)"%;, and

nl”

n!

V(T) = ((\/ﬁ)ngn . <@>n> " <”—n>l/n < const

(use Stirling formula: n! ~ n"e™"v/2mn)

Corollary 4 ( [4]). : For every 0 < 6 < 1, a random subspace E of R" of
codimension én satisfies with probability 1 —e™":

B}yNE C (VnBYNE) C C()-ByNE



Equivalently, (let ¢(d) = %)7

1
c@lzllz < —=llzlli < |l2ll2 (%)

< 7 <

for all x € E.

Corollary 5 ( Kashin’s Splitting [4]). : 3 an orthogonal decomposition

R"=E@F
into two n/2 - dimensional subspaces, s.t. (*) holds for both E and F.

Proof: Apply the corrollary to E and F' (both are random, uniformly dis-
tributed).

1 Applications in Computer Science

Usually ||x||; is easier to compute than ||z||2

Questions of applicability of [V. R. T.]: [5]

For subgaussian matrices (e.g. Bernoulli):

- should be true for E = ker G (try - where is the difficulty ?)
- true for £ = ImG [ [7]]



e Dependence on § 7
- In V.R.T. : must in general be exponential | [5]]
- For BT : polynomial

1 1
< — —
C) <c 5 log 5

(best possible estimate) | [2]] - gaussian case
- Subgaussian case in general - OPEN
- Bernoulli case - polynomial:

C(6) <65 og %

(see [ [6]])

Open problem: Explicit constructions of E in Kashin’s Theorem (what is an
appropriate basis 7)

Best known case: dim(E) = n'~® (rather than (1 — 6)n)

See [P.Indyk: ”Uncertainty Principles ...” [3]].
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