Non-Asymptotic Theory of Random Matrices

Lecture 15: Invertibility of Square Gaussian Matrices, Sparse Vectors

Lecturer: Roman Vershynin
Scribe: Brendan Farrell
Thursday, February 22, 2006

1 Invertibility of Square Gaussian Matrices

Let A be an $n \times n$ square matrix with i.i.d. standard Gaussian entries. Recall that

$$
s_{1}(A)=\max _{x:\|x\|_{2}=1}\|A x\|_{2}=\|A\|_{2}=O(\sqrt{n})
$$

w.h.p.,

$$
s_{n}(A)=\min _{x:\|x\|_{2}=1}\|A x\|_{2}=\frac{1}{\left\|A^{-1}\right\|_{2}},
$$

and

$$
\mathbb{E}\left[s_{n}(A)\right]=\sqrt{n}-\sqrt{n}=0 .
$$

If A is $n \times(n-1)$, then

$$
\mathbb{E}\left[s_{n}(A)\right] \geq \sqrt{n}-\sqrt{n-1} \sim \frac{1}{\sqrt{n}} .
$$

In the 1940 's von Neumann predicted that $s_{n}(A) \sim 1 / \sqrt{n}$. His motivation was solving a system of linear equations, $A x=b$, with n equations and n unknowns. The solution $x=A^{-1} b$, however, is inexact because b is subject to roundoff and other errors. Rather than the true b, one must work with a noisy vector \tilde{b}, and so one actually computes $\tilde{x}=A^{-1} \tilde{b}$. Therefore, the error is $\|x-\tilde{x}\|_{2}=\left\|A^{-1}(b-\tilde{b})\right\|_{2} \leq\left\|A^{-1}\right\|_{2} \cdot\|b-\tilde{b}\|_{2}$. An upperbound on $\left\|A^{-1}\right\|_{2}$ is given by a lower bound on $s_{n}(A)$.

In 1985 Smale conjectured that

$$
\mathbb{P}\left(s_{n}(A) \leq \frac{\epsilon}{\sqrt{n}}\right) \sim \epsilon .
$$

This implies, first, that $\mathbb{E}\left[s_{n}(A)\right]$ and $\mathbb{M}\left[s_{n}(A)\right] \sim 1 / \sqrt{n}$. Second, this implies that $s_{n}(A)$ is not concentrated.

Alan Edelman proved this conjecture in 1988 [1] by using an explicit formula for the joint density of singular values $s_{1}(A), s_{2}(A), \ldots, s_{n}(A)$ of an
$m \times n(m \geq n)$, Gaussian matrix. Set $\lambda_{k}=s_{k}^{2}(A)$. Then λ_{k} are the eigenvalues of $A^{*} A$, ordered $\lambda_{1} \geq, \ldots, \lambda_{n}$. the density is given by

$$
\operatorname{dens}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=K_{m, n} \exp \left(-\frac{1}{2} \sum_{k=1}^{n}\right) \prod_{k=1}^{n} \lambda_{k}^{\frac{m-n-1}{2}} \prod_{j<k}\left(\lambda_{j}-\lambda_{k}\right) .
$$

Edelman "integrated out" $\lambda_{1}, \ldots, \lambda_{n-1}$ to obtain the explicit density for λ_{n}. This proved Smale's conjecture for matrices over \mathbb{R}. For \mathbb{C}, Edelman proved that λ_{n} is distributed identically with χ_{2}^{2} / \sqrt{n}, where $\chi_{2}^{2}=g_{1}^{2}+g_{2}^{2}$ and $g_{1}, g_{2} \sim \mathcal{N}(0,1)$ are independent. Spielman-Teng conjectured (ICM 2002, [3]), that for Bernoulli matrices $s_{n}(A) \sim 1 / \sqrt{n}$ w.h.p..

Theorem 1 (Rudelson-Vershynin 2006 [2]). $s_{n}(A) \sim 1 / \sqrt{n}$ w.h.p. for all subgaussian matrices.

First we consider the question: Why is the Gaussian square matrix invertible? That is, why is it nonsingular with probability 1 ?

Full rank \Leftrightarrow all the rows are linearly independent
\Leftrightarrow each row does not lie in the span of the other rows
Let X_{k} be the $k^{\text {th }}$ row of $A\left(X_{k}=A e_{n}\right)$ and H_{k} the span of the remaining rows. The reason for good invertibility of A is $\operatorname{dist}\left(x_{k}, H_{k}\right) \geq \ldots$ We have $s_{n}(A)=\min _{x:\|x\|_{2}=1}\|A x\|_{2}, x=\left(x_{1}, \ldots, x_{n}\right)$, and $A x=\sum_{i=1}^{n} x_{k} X_{k}$.

$$
\begin{aligned}
\|A x\|_{2} & \geq \operatorname{dist}\left(\sum_{l=1}^{n} x_{l} X_{l}, H_{k}\right) \\
& =\operatorname{dist}\left(x_{k} X_{k}, H_{k}\right) \\
& =\left|x_{k}\right| \cdot \operatorname{dist}\left(X_{k}, H_{k}\right)
\end{aligned}
$$

Fact: $\|A x\|_{2} \geq \max _{k}\left|x_{k}\right| \cdot \operatorname{dist}\left(X_{k}, H_{k}\right)$.
We then need to prove lower bounds for both $\left|x_{k}\right|$ and $\operatorname{dist}\left(X_{k}, H_{k}\right)$.

1. $\|x\|_{2}=1$. So for some $k,\left|x_{k}\right| \geq 1 / \sqrt{n}$.
2. For $\operatorname{dist}\left(X_{k}, H_{k}\right)$, we use the Distance Lemma of Lecture 14.
X_{k} and H_{k} are independent, so we condition on H_{k}. That is, the probability $\mathbb{P}_{X_{k}}$ is w.r.t. X_{k} for H_{k} fixed. The Distance Lemma states

$$
\mathbb{P}_{X_{k}}\left(\operatorname{dist}\left(X_{k}, H_{k}\right)<\epsilon\right) \leq c \epsilon
$$

Thus $\mathbb{P}\left(\operatorname{dist}\left(X_{k}, H_{k}\right)<\epsilon\right) \leq C \epsilon$. We take the union bound over $k=1, \ldots, n$:

$$
\mathbb{P}\left(\exists k: \operatorname{dist}\left(X_{k}, H_{k}\right)<\epsilon\right) \leq C \epsilon n .
$$

Define the event

$$
\mathcal{E}=\left\{\operatorname{dist}\left(X_{k}, H_{k}\right)>\epsilon \forall k=1, \ldots, n\right\} ;
$$

then $\mathbb{P}\left(\mathcal{E}^{c}\right)=C \epsilon n$. If \mathcal{E} holds, then by the fact above,

$$
\|A x\|_{2} \geq \max _{k}\left|x_{k}\right| \cdot \epsilon \geq \epsilon / n .
$$

This holds for all $x,\|x\|_{2}=1$. Thus, by taking the min over all such x, $\mathcal{E} \Rightarrow s_{n}(A) \geq \epsilon / \sqrt{n}$. We have shown

$$
\mathbb{P}\left(s_{n}(A)<\frac{\epsilon}{\sqrt{n}}\right) \leq \mathbb{P}\left(\mathcal{E}^{c}\right) \leq c \epsilon n .
$$

Equivalently,

$$
\mathbb{P}\left(s_{n}(A)<\frac{\epsilon}{n^{3 / 2}}\right) \leq C \epsilon .
$$

Theorem 2. $s_{n}(A) \geq n^{-3 / 2}$ w.h.p.
This bound is polynomial, but not sharp.

2 Invertibility of Sparse Vectors

Consider a vector $x \in \mathbb{R}^{n},\|x\|_{2}=1, \operatorname{supp}(x) \subset\{1,2, \ldots, n / 2\}=I$. Then $A x$ is equivalent to $A_{I} x$, where A_{I} is the restriction of A to the columns given by I. Now A_{I} has dimension $n \times \frac{n}{2}$, which is rectangular, and thus well invertible.

Definition 3 (Sparse vectors). A vector $x \in \mathbb{R}^{n}$ is called k -sparse $i f|\operatorname{supp}(x)| \leq$ k.

If I is fixed, $|I|=\delta n$, for some $\delta \in(0,1)$. Then the smallest singular value of A_{I} is distributed $\sim \sqrt{n}-\sqrt{\delta n}>c \sqrt{n}$ w.h.p..

Corollary 4 (to a Theorem of Lecture 11). Let B be an $n \times \delta n$ Gaussian matrix and $\delta<1 / 2$. Then

$$
\mathbb{P}\left(\min _{x:\|x\|_{2}=1}\|B\|_{2} \geq c \sqrt{n}\right)>1-\binom{n}{\delta n} e^{-c n} .
$$

By Stirling's formula, $\binom{n}{k}^{k} \leq\binom{ e n}{k}^{k}$. Thus $\binom{n}{\delta n} \leq \frac{\epsilon \delta n}{\delta}=e^{\log \left(\frac{\epsilon}{\delta}\right) \delta n}<e^{\frac{c n}{2}}$ for some $\delta=$ const.

Lemma 5 (Invertibility of Sparse Vectors).

$$
\mathbb{P}\left(\min _{x:\|x\|_{2}=1, \delta n-\text { sparse }}\|A x\|_{2} \geq c \sqrt{n}\right) \geq 1-e^{-c n} .
$$

The Lemma follows from Corollary 4 and the comments following it. In the next lecture we will consider compressible vectors; that is, vectors which are not sparse, but are well approximated by sparse vectors.

References

[1] A. Edelman. Eigenvalues and condition numbers of random matrices. SIAM J. Matrix Anal. Appl., 9(4):543-560, 1988.
[2] M. Rudelson and R. Vershynin. Preprint. 2006.
[3] D. A. Spielman and S.-H. Teng. Smoothed analysis of algorithms. In Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), pages 597-606, Beijing, 2002. Higher Ed. Press.

