Non-Asymptotic Theory of Random Matrices

Lecture 15: Invertibility of Square Gaussian Matrices, Sparse

Vectors

Scribe: Brendan Farrell

Thursday, February 22, 2006

Lecturer: Roman Vershynin

1 Invertibility of Square Gaussian Matrices

Let A be an $n \times n$ square matrix with i.i.d. standard Gaussian entries. Recall that

$$s_1(A) = \max_{x:\|x\|_2=1} \|Ax\|_2 = \|A\|_2 = O(\sqrt{n})$$

w.h.p.,

$$s_n(A) = \min_{x:||x||_2=1} ||Ax||_2 = \frac{1}{||A^{-1}||_2},$$

and

$$\mathbb{E}[s_n(A)] = \sqrt{n} - \sqrt{n} = 0.$$

If A is $n \times (n-1)$, then

$$\mathbb{E}[s_n(A)] \ge \sqrt{n} - \sqrt{n-1} \sim \frac{1}{\sqrt{n}}.$$

In the 1940's von Neumann predicted that $s_n(A) \sim 1/\sqrt{n}$. His motivation was solving a system of linear equations, Ax = b, with n equations and nunknowns. The solution $x = A^{-1}b$, however, is inexact because b is subject to roundoff and other errors. Rather than the true b, one must work with a noisy vector \tilde{b} , and so one actually computes $\tilde{x} = A^{-1}\tilde{b}$. Therefore, the error is $||x - \tilde{x}||_2 = ||A^{-1}(b - \tilde{b})||_2 \le ||A^{-1}||_2 \cdot ||b - \tilde{b}||_2$. An upperbound on $||A^{-1}||_2$ is given by a lower bound on $s_n(A)$.

In 1985 Smale conjectured that

$$\mathbb{P}(s_n(A) \le \frac{\epsilon}{\sqrt{n}}) \sim \epsilon.$$

This implies, first, that $\mathbb{E}[s_n(A)]$ and $\mathbb{M}[s_n(A)] \sim 1/\sqrt{n}$. Second, this implies that $s_n(A)$ is not concentrated.

Alan Edelman proved this conjecture in 1988 [1] by using an explicit formula for the joint density of singular values $s_1(A), s_2(A), ..., s_n(A)$ of an $m \times n \ (m \ge n)$, Gaussian matrix. Set $\lambda_k = s_k^2(A)$. Then λ_k are the eigenvalues of A^*A , ordered $\lambda_1 \ge \dots, \lambda_n$. the density is given by

$$dens(\lambda_1, ..., \lambda_n) = K_{m,n} \exp(-\frac{1}{2} \sum_{k=1}^n) \prod_{k=1}^n \lambda_k^{\frac{m-n-1}{2}} \prod_{j < k} (\lambda_j - \lambda_k).$$

Edelman "integrated out" $\lambda_1, ..., \lambda_{n-1}$ to obtain the explicit density for λ_n . This proved Smale's conjecture for matrices over \mathbb{R} . For \mathbb{C} , Edelman proved that λ_n is distributed identically with χ_2^2/\sqrt{n} , where $\chi_2^2 = g_1^2 + g_2^2$ and $g_1, g_2 \sim \mathcal{N}(0, 1)$ are independent. Spielman-Teng conjectured (ICM 2002, [3]), that for Bernoulli matrices $s_n(A) \sim 1/\sqrt{n}$ w.h.p..

Theorem 1 (Rudelson-Vershynin 2006 [2]). $s_n(A) \sim 1/\sqrt{n}$ w.h.p. for all subgaussian matrices.

First we consider the question: Why is the Gaussian square matrix invertible? That is, why is it nonsingular with probability 1?

Full rank \Leftrightarrow all the rows are linearly independent

 \Leftrightarrow each row does not lie in the span of the other rows

Let X_k be the k^{th} row of A ($X_k = Ae_n$) and H_k the span of the remaining rows. The reason for good invertibility of A is $dist(x_k, H_k) \ge ...$ We have $s_n(A) = \min_{x:||x||_2=1} ||Ax||_2$, $x = (x_1, ..., x_n)$, and $Ax = \sum_{i=1}^n x_k X_k$.

$$||Ax||_2 \geq \operatorname{dist}(\sum_{l=1}^n x_l X_l, H_k)$$

= $\operatorname{dist}(x_k X_k, H_k)$
= $|x_k| \cdot \operatorname{dist}(X_k, H_k).$

Fact: $||Ax||_2 \ge \max_k |x_k| \cdot \operatorname{dist}(X_k, H_k).$

We then need to prove lower bounds for both $|x_k|$ and $dist(X_k, H_k)$.

- 1. $||x||_2 = 1$. So for some $k, |x_k| \ge 1/\sqrt{n}$.
- 2. For dist (X_k, H_k) , we use the Distance Lemma of Lecture 14.

 X_k and H_k are independent, so we condition on H_k . That is, the probability \mathbb{P}_{X_k} is w.r.t. X_k for H_k fixed. The Distance Lemma states

$$\mathbb{P}_{X_k}(\operatorname{dist}(X_k, H_k) < \epsilon) \le c\epsilon.$$

Thus $\mathbb{P}(\operatorname{dist}(X_k, H_k) < \epsilon) \leq C\epsilon$. We take the union bound over k = 1, ..., n:

$$\mathbb{P}(\exists k : \operatorname{dist}(X_k, H_k) < \epsilon) \le C\epsilon n.$$

Define the event

$$\mathcal{E} = \{ \operatorname{dist}(X_k, H_k) > \epsilon \; \forall \; k = 1, ..., n \};$$

then $\mathbb{P}(\mathcal{E}^c) = C\epsilon n$. If \mathcal{E} holds, then by the fact above,

$$||Ax||_2 \ge \max_k |x_k| \cdot \epsilon \ge \epsilon/n.$$

This holds for all x, $||x||_2 = 1$. Thus, by taking the min over all such x, $\mathcal{E} \Rightarrow s_n(A) \ge \epsilon/\sqrt{n}$. We have shown

$$\mathbb{P}(s_n(A) < \frac{\epsilon}{\sqrt{n}}) \le \mathbb{P}(\mathcal{E}^c) \le c\epsilon n.$$

Equivalently,

$$\mathbb{P}(s_n(A) < \frac{\epsilon}{n^{3/2}}) \le C\epsilon.$$

Theorem 2. $s_n(A) \ge n^{-3/2} w.h.p.$

This bound is polynomial, but not sharp.

2 Invertibility of Sparse Vectors

Consider a vector $x \in \mathbb{R}^n$, $||x||_2 = 1$, $\operatorname{supp}(x) \subset \{1, 2, ..., n/2\} = I$. Then Ax is equivalent to $A_I x$, where A_I is the restriction of A to the columns given by I. Now A_I has dimension $n \times \frac{n}{2}$, which is rectangular, and thus well invertible.

Definition 3 (Sparse vectors). A vector $x \in \mathbb{R}^n$ is called k-sparse if $|\operatorname{supp}(x)| \le k$.

If I is fixed, $|I| = \delta n$, for some $\delta \in (0, 1)$. Then the smallest singular value of A_I is distributed $\sim \sqrt{n} - \sqrt{\delta n} > c\sqrt{n}$ w.h.p..

Corollary 4 (to a Theorem of Lecture 11). Let B be an $n \times \delta n$ Gaussian matrix and $\delta < 1/2$. Then

$$\mathbb{P}(\min_{x:\|x\|_{2}=1} \|B\|_{2} \ge c\sqrt{n}) > 1 - \binom{n}{\delta n} e^{-cn}.$$

By Stirling's formula, $\binom{n}{k}^k \leq \binom{en}{k}^k$. Thus $\binom{n}{\delta n} \leq \frac{\epsilon \delta n}{\delta} = e^{\log(\frac{\epsilon}{\delta})\delta n} < e^{\frac{cn}{2}}$ for some $\delta = \text{const.}$

Lemma 5 (Invertibility of Sparse Vectors).

$$\mathbb{P}\left(\min_{x:\|x\|_2=1,\delta n-\text{sparse}} \|Ax\|_2 \ge c\sqrt{n}\right) \ge 1 - e^{-cn}.$$

The Lemma follows from Corollary 4 and the comments following it. In the next lecture we will consider compressible vectors; that is, vectors which are not sparse, but are well approximated by sparse vectors.

References

- A. Edelman. Eigenvalues and condition numbers of random matrices. SIAM J. Matrix Anal. Appl., 9(4):543–560, 1988.
- [2] M. Rudelson and R. Vershynin. Preprint. 2006.
- [3] D. A. Spielman and S.-H. Teng. Smoothed analysis of algorithms. In Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), pages 597–606, Beijing, 2002. Higher Ed. Press.