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1 Invertibility of Square Gaussian Matrices

Let A be an n × n square matrix with i.i.d. standard Gaussian entries.
Recall that

s1(A) = max
x:‖x‖2=1

‖Ax‖2 = ‖A‖2 = O(
√

n)

w.h.p.,

sn(A) = min
x:‖x‖2=1

‖Ax‖2 =
1

‖A−1‖2
,

and
E[sn(A)] =

√
n−

√
n = 0.

If A is n× (n− 1), then

E[sn(A)] ≥
√

n−
√

n− 1 ∼ 1√
n

.

In the 1940’s von Neumann predicted that sn(A) ∼ 1/
√

n. His motivation
was solving a system of linear equations, Ax = b, with n equations and n
unknowns. The solution x = A−1b, however, is inexact because b is subject
to roundoff and other errors. Rather than the true b, one must work with
a noisy vector b̃, and so one actually computes x̃ = A−1b̃. Therefore, the
error is ‖x − x̃‖2 = ‖A−1(b − b̃)‖2≤ ‖A−1‖2 · ‖b − b̃‖2. An upperbound on
‖A−1‖2 is given by a lower bound on sn(A).

In 1985 Smale conjectured that

P(sn(A) ≤ ε√
n

) ∼ ε.

This implies, first, that E[sn(A)] and M[sn(A)] ∼ 1/
√

n. Second, this implies
that sn(A) is not concentrated.

Alan Edelman proved this conjecture in 1988 [1] by using an explicit
formula for the joint density of singular values s1(A), s2(A), ..., sn(A) of an
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m × n (m ≥ n), Gaussian matrix. Set λk = s2
k(A). Then λk are the

eigenvalues of A∗A, ordered λ1 ≥, ..., λn. the density is given by

dens(λ1, ..., λn) = Km,n exp(−1
2

n∑
k=1

)
n∏

k=1

λ
m−n−1

2
k

∏
j<k

(λj − λk).

Edelman “integrated out” λ1, ..., λn−1 to obtain the explicit density for λn.
This proved Smale’s conjecture for matrices over R. For C, Edelman proved
that λn is distributed identically with χ2

2/
√

n, where χ2
2 = g2

1 + g2
2 and

g1, g2 ∼ N (0, 1) are independent. Spielman-Teng conjectured (ICM 2002,
[3]), that for Bernoulli matrices sn(A) ∼ 1/

√
n w.h.p..

Theorem 1 (Rudelson-Vershynin 2006 [2]). sn(A) ∼ 1/
√

n w.h.p. for all
subgaussian matrices.

First we consider the question: Why is the Gaussian square matrix in-
vertible? That is, why is it nonsingular with probability 1?

Full rank ⇔ all the rows are linearly independent
⇔ each row does not lie in the span of the other rows

Let Xk be the kth row of A (Xk = Aen) and Hk the span of the remaining
rows. The reason for good invertibility of A is dist(xk,Hk) ≥ ... We have
sn(A) = minx:‖x‖2=1 ‖Ax‖2, x = (x1, ..., xn), and Ax =

∑n
i=1 xkXk.

‖Ax‖2 ≥ dist(
n∑

l=1

xlXl,Hk)

= dist(xkXk,Hk)
= |xk| · dist(Xk,Hk).

Fact: ‖Ax‖2 ≥ maxk |xk| · dist(Xk,Hk).
We then need to prove lower bounds for both |xk| and dist(Xk,Hk).

1. ‖x‖2 = 1. So for some k, |xk| ≥ 1/
√

n.

2. For dist(Xk,Hk), we use the Distance Lemma of Lecture 14.

Xk and Hk are independent, so we condition on Hk. That is, the probability
PXk

is w.r.t. Xk for Hk fixed. The Distance Lemma states

PXk
(dist(Xk,Hk) < ε) ≤ cε.

Thus P(dist(Xk,Hk) < ε) ≤ Cε. We take the union bound over k = 1, ..., n:

P(∃ k : dist(Xk,Hk) < ε) ≤ Cεn.
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Define the event

E = {dist(Xk,Hk) > ε ∀ k = 1, ..., n};

then P(Ec) = Cεn. If E holds, then by the fact above,

‖Ax‖2 ≥ max
k
|xk| · ε ≥ ε/n.

This holds for all x, ‖x‖2 = 1. Thus, by taking the min over all such x,
E ⇒ sn(A) ≥ ε/

√
n. We have shown

P(sn(A) <
ε√
n

) ≤ P(Ec) ≤ cεn.

Equivalently,
P(sn(A) <

ε

n3/2
) ≤ Cε.

Theorem 2. sn(A) ≥ n−3/2 w.h.p.

This bound is polynomial, but not sharp.

2 Invertibility of Sparse Vectors

Consider a vector x ∈ Rn, ‖x‖2 = 1, supp(x) ⊂ {1, 2, ..., n/2} = I. Then
Ax is equivalent to AIx, where AI is the restriction of A to the columns
given by I. Now AI has dimension n × n

2 , which is rectangular, and thus
well invertible.

Definition 3 (Sparse vectors). A vector x ∈ Rn is called k-sparse if |supp(x)| ≤
k.

If I is fixed, |I| = δn, for some δ ∈ (0, 1). Then the smallest singular
value of AI is distributed ∼

√
n−

√
δn > c

√
n w.h.p..

Corollary 4 (to a Theorem of Lecture 11). Let B be an n × δn Gaussian
matrix and δ < 1/2. Then

P( min
x:‖x‖2=1

‖B‖2 ≥ c
√

n) > 1−
(

n

δn

)
e−cn.

By Stirling’s formula,
(
n
k

)k ≤
(
en
k

)k. Thus
(

n
δn

)
≤ ε

δ
δn = elog( ε

δ
)δn < e

cn
2

for some δ =const.
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Lemma 5 (Invertibility of Sparse Vectors).

P
(

min
x:‖x‖2=1,δn−sparse

‖Ax‖2 ≥ c
√

n

)
≥ 1− e−cn.

The Lemma follows from Corollary 4 and the comments following it. In
the next lecture we will consider compressible vectors; that is, vectors which
are not sparse, but are well approximated by sparse vectors.
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