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1 Background and Motivation

We begin this lecture by asking why should an arbitrary n × n Gaussian
matrix A be invertible? That is, does there exist a lower bound on the
smallest singular value

sn(A) = inf
x∈Sn−1

‖Ax‖2 ≥ c√
n

where c > 0 is an absolute constant. There are two reasons (or cases) which
we will pursue in this lecture.

1. In Lecture 15 we saw that the invertibility of rectangular (i.e., non-
square) Gaussian matrices yields invertibility of A for all sparse vec-
tors. Specifically, we derived Sparse Lemma 5 which stated that

There exists an absolute constant δ ∈ (0, 1) such that with probabil-
ity 1− e−cn

inf
x∈Sn−1

(δn)-sparse

‖Ax‖2 ≥ c
√

n. (1)

2. Suppose that the rows X1, . . . , Xn of A are “very” linearly indepen-
dent. This has a geometric interpretation as we saw the Distance
Lemma of Lecture 14. Let the hyperplane Hk = span(Xj)j 6=k. Then

P(dist(Xk,Hk) < ε) ∼ ε

and it follows that

‖Ax‖2 ≥ max
k
|xk| · dist(Xk,Hk) (2)

for all x ∈ Sn−1. This yields invertibility of A for all spread vectors,
e.g., if |xk| ∼ 1√

n
, then ‖Ax‖2 ≥ 1√

n
· const.
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In some sense these two cases represent opposite extremes of vectors on
the unit sphere. Our strategy will be to decompose the unit sphere into
sets of vectors that are either sparse, spread, or neither. These fall into two
mutually exclusive classes: compressible vectors and incompressible vectors.

Compressible Incompressible

Sparse Spread

Figure 1: Decomposition of the unit sphere

Definition 1 (Compressible vector). Let δ, ρ ∈ (0, 1). A vector x ∈ Sn−1

is called compressible if its distance to the set of (δn)-sparse vectors is less
than or equal to ρ.

Notation (Compressible and incompressible sets). The set of compressible
vectors with respect to δ, ρ is denoted as Comp = Comp(δ, ρ). The set of
incompressible vectors, denoted as Incomp, is the complement of Comp on
the unit sphere, i.e., Incomp = Sn−1\Comp.

Equivalently, x ∈ Comp if and only if there exists a (δn)-sparse vector y
such that ‖x−y‖2 ≤ ρ. This says that most of the energy (or “information”)
of vector x is contained in just δn of its n coordinates.

In signal processing, a signal x ∈ Rn is compressible if and only if its
coefficients decay “fast.” That is, by arranging (xk) in non-increasing order
x∗1 ≥ x∗2 ≥ . . . ≥ x∗n, then x is compressible if and only if |x∗k| ≤ Ck−1/p for
all k where C is an absolute constant and p ∈ (0, 1). For instance, (xk) can
be the Fourier or wavelet coefficients of the signal. Thus we see that most of
the signal’s information is carried in just δn coefficients. So x ≈ (δn)-sparse
vector which implies that x is compressible.
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Lemma 2 (Incompressible vectors are spread). Let x ∈ Incomp. Then
there exists σ ⊂ (1, . . . , n) such that |σ| ≥ c0n and

c1√
n
≤ |xk| ≤ c2√

n

for all k ∈ σ.

Proof. Exercise.

Note that here, c0, c1, c2 depend only on δ and ρ.

2 Invertibility for compressible and incompressible vectors

With the definitions and lemmas of the previous section we can now address
invertibility for compressible and incompressible vectors.

2.1 Compressible vectors

Invertibility for compressible vectors follows directly from the Sparse Lemma
in (1) and approximation. Specifically, note that every x ∈ Comp can be
expressed as x = y + z where y is a (δn)-sparse vector and ‖z‖2 ≤ ρ. Then
from the reverse triangle inequality we have

‖y‖2 ≥ ‖x‖2 − ‖z‖2 ≥ 1− ρ

and

inf
x∈Comp

‖Ax‖2 ≥ inf
y:(δn)-sparse
‖y‖2≥1−ρ

‖Ay‖2 − sup
‖z‖2≤ρ

‖Az‖2

= a − b.

By the Sparse Lemma we have

a ≥ (1− ρ)c
√

n

with probability 1− e−cn, and

b = ρ ‖A‖ ≤ Cρ
√

n

also with probability 1− e−cn. Hence, with probability 1− 2e−cn we have

a− b ≥
(
(1− ρ)c− Cρ

)√
n

≥ c′
√

n

if ρ > 0 is chosen as a sufficiently small absolute constant.
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Now we can revise (1) for general compressible vectors:

Lemma 3 (Compressible vectors). There exists absolute constants
δ, ρ ∈ (0, 1) such that with probability 1− 2e−cn

inf
x∈Comp

‖Ax‖2 ≥ c
√

n.

2.2 Incompressible vectors

There are many more incompressible than compressible vectors, so this is
intuitively harder to analyze. We make the following assumptions:

a) Incompressible vector x has c0n coordinates ∼ 1√
n

(from Lemma 2)

b) dist(Xk,Hk) > ε with probability 1− cε (from last lecture).

Then we expect that (1 − cε)n of these have a distance greater than ε.
Take the intersection of these sets of coordinates. It is non-empty because
c0n + (1 − cε)n > n (with ε small enough). Thus, if k ∈ intersection, then
‖Ax‖2 ≥ 1√

n
ε.

Lemma 4 (Invertibility via distance to a hyperplane).

P
(

inf
x∈Incomp

‖Ax‖2 <
ρε√
n

)
≤ 1

δ
P
(
dist(X1,H1) < ε

)

since the Xk are i.i.d..

Observation 5. Note that there is no union bound as before which is why
the RHS has no dependence on n.

Proof. Let 1E be the indicator function on the set E. Recall that its ex-
pected value is just E1E = P(E). We expect the number of coordinates
that satisfy dist(Xk,Hk) < ε to be

E |{k : dist(Xk,Hk) < ε}| = E
n∑

k=1

1{dist(Xk,Hk)<ε}

=
n∑

k=1

P
(
dist(Xk,Hk) < ε

)

= pn
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where p = P
(
dist(Xk,Hk) < ε

)
.

Consider the set σbad = { at least δn distances where dist(Xk, Hk) < ε}
to be an undesirable or “bad” set. Then using Markov’s inequality we have

P(σbad) = P
(
|{k : dist(Xk,Hk) < ε}| ≥ δn

)
≤ pn

δn
=

p

δ
.

Now consider the “good” set σ1 = {k : dist(Xk,Hk) ≥ ε}. The “good”
event U = {|σ1| ≥ (1 − δ)n}. Then the probability of its complement is
P(U{) ≤ p

δ , so “many distances are big.”

On the other hand, many coordinates of x are big too, so

x ∈ Incomp ⇒ σ2 = {k : |xk| > ρ√
n
} with |σ2| ≥ δn. (Ex.)

If the good event U occurs, then

σ1 ∩ σ2 6= ∅
because

|σ1|+ |σ2| > n.

Therefore, there exists k such that dist(Xk,Hk) ≥ ε and |xk| > ρ√
n
. Hence,

‖Ax‖2 ≥ ρ√
n

ε.

Observation 6. By the Distance Lemma

P
(
dist(X1,H1) < ε

)
≤ Cε.

Thus the RHS ≤ C
δ ε ≤ c1ε.

We arrive at the following theorem.

Theorem 7 (Invertibility of Gaussian matrices). Let A be an m×n Gaussian
matrix. Then for all ε > 0

P
(
sn(A) <

ε√
n

)
< Cε.

In particular, the median of sn(A) ∼ 1√
n

is sharp!
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Proof.

P
(

inf
x∈Sn−1

‖Ax‖2 <
ε√
n

)
≤ P

(
inf

x∈Comp
‖Ax‖2 <

ε√
n

)
+ P

(
inf

x∈Incomp
‖Ax‖2 <

ε√
n

)

≤ (1− 2e−cn) + C1ε.

Observation 8. The 2e−cn term can be removed by considering

P
(

inf
x∈Comp

‖Ax‖2 < c
√

n
)

(i.e., ε√
n
≤ c

√
n) with care.

Observation 9. There is a simpler proof for Gaussian matrices [1]. But it
does not generalize to subgaussian matrices like the results of today’s lecture.
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