Non-Asymptotic Theory of Random Matrices Lecture 17: Invertibility of Subgaussian Matrices; Small Ball Probability via the Central Limit Theorem

Lecturer: Roman Vershynin

Scribe: Yuting Yang

Thursday, March 1, 2007

1 Invertibility of Subgaussian Matrices

Let A be an $n \times n$ subgaussian matrix (entries are i.i.d. subgaussian r.v's with variance 1). There are two reasons for the invertibility of A, depending on the nature of the unit vector on which A is acting – either compressible or incompressible. We recall that compressible vectors are those whose distance is at most some constant ρ from the set of (δn) -sparse vectors, and incompressible vectors are those that are not compressible. It is obvious that the unit sphere S^{n-1} is the disjoint union of the compressible vectors (**Comp**) and the incompressible vectors (**Incomp**). We have the following lemmas for A Gaussian.

Lemma 1 (Compressible). $\mathbb{P}(\inf_{x \in Comp} ||Ax||_2 \le C\sqrt{n}) \le \exp(-cn)$.

Lemma 2 (Incompressible). Let X_1, \dots, X_n be the rows of A and $H_n = span(X_1, \dots, X_{n-1})$. Then, for $\epsilon > 0$,

$$\mathbb{P}(\inf_{x \in Incomp} \|Ax\|_2 < \frac{C\epsilon}{\sqrt{n}}) \le C \ \mathbb{P}(dist(X_n, H_n) < \epsilon).$$

It turns out that both lemmas also hold for subgaussian matrices.

For Gaussian matrices, $\mathbb{P}(dist(X_n, H_n) < \epsilon) \sim \epsilon$, where X_n is a random Gaussian vector and H_n is a hyperplane. Note that X_n and H_n are independent because of the independence of each row. Then, the probability for incompressible vectors is $\leq C \epsilon$, and thus

$$\mathbb{P}(s_n(A) < \frac{\epsilon}{\sqrt{n}}) \le \exp\left(-cn\right) + C\,\epsilon.$$

In particular, $s_n(A) \sim 1/\sqrt{n}$ with high probability. Now, the distance bound has to be proved for subgaussian A. Let X^* be a unit vector orthogonal to H_n (in particular, X^* is orthogonal to X_1, \dots, X_{n-1}). Such X^* is called a **random normal** vector. We leave the following result as an exercise:

$$dist(X_n, H_n) \ge |\langle X^*, X_n \rangle|.$$
 (Ex)

Note that X^* and X_n are independent. We will condition on X^* (i.e. fix X^*).

Let $X^* = (a_1, \dots, a_n)$ be fixed, $X_n = (\xi_1, \dots, \xi_n)$ be composed of i.i.d. r.v's. Then,

$$\langle X^*, X_n \rangle = \sum_{k=1}^n a_k \xi_k$$

is a sum of independent random vectors. Our goal is to find an upper bound for $\mathbb{P}(|\sum_{k=1}^{n} a_k \xi_k| < \epsilon)$.

2 Small Ball Probabilities

Consider a sum of independent r.v's $S = \sum_{k=1}^{n} a_k \xi_k$, where ξ_k are mean zero i.i.d. r.v's, and $a = (a_1, \dots, a_n) \in \mathbb{R}^n$.

Exercise: Consider the special case where $\xi_k = \pm 1$ so that $S = \sum_{k=1}^n \pm a_k$.

How is S distributed?

• Large Deviation Theory: S is concentrated around its mean (so in this case, around 0).

• Small Ball Probability: This theory gives lower bounds on its mean (anticoncentration). Define the small ball(ϵ -ball) probability with respect to *a* by

$$p_{\epsilon}(a) := \sup_{v \in \mathbb{R}} \mathbb{P}(|S - v| < \epsilon).$$

Then we want to find $p_{\epsilon}(a) \leq ?$.

For $\xi'_k s$ Gaussian, S is also Gaussian. So $p_{\epsilon}(a) \leq \sim \epsilon$. However, this estimate fails for ± 1 sums: take $a = (1, 1, \dots, 1)$ and $S = \sum_{1}^{n} \pm 1$. Then, $\mathbb{P}(S = 0) \sim \frac{1}{\sqrt{n}}$ because the number of choices for cancelation(half +'s and half -'s) is equal to $\binom{n}{n/2}$. Then,

$$\mathbb{P}(S=0) = \frac{\binom{n}{n/2}}{2^n} \sim \frac{1}{\sqrt{n}}$$

Open Question: Is this the worst case?

We will use the **Central Limit Theorem (CLT)** to approximate the sum S by a Gaussian random variable, for which the small ball probabilities are easy to estimate.

Consider a random sum $S = \sum_{k=1}^{n} \zeta_k$, where ζ_k are centered independent r.v's

with finite third moments. Then, the variance of S is $\sigma^2 = \sum_{k=1}^n \mathbb{E}|\zeta_k|^2$.

The classic CLT says that if $\sigma = 1$, then $S \sim N(0, 1)$. Here, we will use another version of the CLT.

Let g be standard Gaussian (i.e. $g \sim N(0, 1)$).

Theorem 3 (Central Limit Theorem (Berry-Esseén)). Assume $\sigma = 1$. Then $\forall t > 0$,

$$|\mathbb{P}(S < t) - \mathbb{P}(g < t)| \le C \sum_{k=1}^{n} \mathbb{E}|\zeta_k|^3.$$

See [2].

We use this for $S = \sum_{k=1}^{n} a_k \xi_k$ so that $\zeta_k = a_k \zeta_k$. Then,

$$\sigma^2 = \sum_{k=1}^n a_k^2 \, \mathbb{E} |\xi_k|^2 = ||a||_2^2,$$

so that $\sigma = ||a||_2$. Also, $\sum_{k=1}^n \mathbb{E} |\zeta_k|^3 \lesssim ||a||_3^3$.

Corollary 4 (CLT). Assume $||a||_2 = 1$. Then,

$$\forall t > 0, \qquad |\mathbb{P}(S < t) - \mathbb{P}(g < t)| \le C ||a||_3^3.$$

Remark: The estimate using the third moment is best when a is well-spread and worst when peaked(in which case $||a||_2 = ||a||_3$).

Exercise: $p_{\epsilon}(a) \leq p_{\epsilon}(P_{\sigma}(a))$, where $P_{\sigma} : \mathbb{R}^n \to \mathbb{R}^{\sigma}$ is a projection onto coordinates in σ .

Intuitively, CLT is better for spread vectors because $||a||_3$ is smaller.

3 Central Limit Theorem for Incompressible Vectors

If a is incompressible, then a has $\sim n$ coordinates $\sim \frac{1}{\sqrt{n}}$. That is, $\exists \sigma \subset \{1, \dots, n\} : |\sigma| \geq cn$ and $\frac{c_1}{\sqrt{n}} \leq |a_k| \leq \frac{c_2}{\sqrt{n}} \forall k \in \sigma$.

We can restrict a onto σ by the exercise above. Then, if $||a||_2 = 1$, we have $||P_{\sigma}a||_2 \sim 1$. (We are restricting incompressible a onto its spread portion.) By Corollary 4, we have that, in particular,

$$|\mathbb{P}(|S - v| < t) - \mathbb{P}(|g - v| < t)| \le 2C ||a||_3^3$$

because the density of g is bounded above by $\frac{1}{\sqrt{2\pi}} \leq 1$ so that $\mathbb{P}(|g-v| < \epsilon) \leq \epsilon$. Then, $\mathbb{P}(|S-v| < \epsilon) \leq \epsilon + 2C ||a||_3^3$. Then,

$$p_{\epsilon}(a) \le p_{\epsilon}(P_{\sigma}a) \le \epsilon + 2C \|P_{\sigma}a\|_3^3 \lesssim \epsilon + \frac{1}{\sqrt{n}}$$

since $|a_k| \sim \frac{1}{\sqrt{n}}$.

Corollary 5 (SBP for Incompressible Vectors). If a is incompressible, then $p_{\epsilon}(a) \leq C(\epsilon + \frac{1}{\sqrt{n}})$.

Remark:

- (1) This is the best possible result because of the ± 1 -sum case.
- (2) This fails for sparse vectors: as a counterexample, take $a = (1, 1, 0, 0, \dots, 0)$. Then, $\mathbb{P}(\sum \pm a_k = 0) = \frac{1}{2}$.

4 Random Normal Vectors are incompressible

We can control random normal X^* via the random matrix $A' := A \setminus \text{last row}$ = rows (X_1, \dots, X_{n-1}) . Recall that X^* is orthogonal to all X_1, \dots, X_{n-1} . So $X^* \in \ker A'$, and

$$A' X^* = 0.$$

Thus, if A' is invertible on some subset S of the unit sphere, then $X^* \notin S$. A', similarly to A, is invertible on the set of compressible vectors. Hence, $X^* \in Incomp$ with high probability.

Corollary 6. With probability $\geq 1 - \exp(-cn)$, X^* is incompressible.

5 Distance Bound

 $\mathbb{P}(dist(X_n,H_n)<\epsilon) \leq \mathbb{P}(|\langle X^*,X_n\rangle|<\epsilon)$

 $= \mathbb{E}_{X_1, \cdots, X_{n-1}} \mathbb{P}_{X_n}(|\langle X^*, X_n \rangle| < \epsilon \text{ and } X^* \in Incomp| \text{ given } X_1, \cdots, X_{n-1}) + \mathbb{P}(X^* \in Comp).$ By Corollary 6, if $X^* \in Comp$, then $\mathbb{P}(|\langle X^*, X_n \rangle| < \epsilon) \le C(\epsilon + \frac{1}{\sqrt{n}}).$ So,

$$\mathbb{P}(dist(X_n, H_n) < \epsilon) \le C(\epsilon + \frac{1}{\sqrt{n}} + \exp(-cn).$$

Theorem 7 (Distance). $\mathbb{P}(dist(X_n, H_n) < \epsilon) \leq C(\epsilon + \frac{1}{\sqrt{n}})$.

It follows that

Theorem 8 $(s_n(A))$. Let A be an $n \times n$ subgaussian random matrix. Then, $\forall \epsilon > 0$,

$$\mathbb{P}(s_n(A) \le \frac{\epsilon}{\sqrt{n}}) \le C(\epsilon + \frac{1}{\sqrt{n}}).$$

In particular, $s_n(A) \sim \frac{1}{\sqrt{n}}$ with high probability.

See [1].

References

- [1] M.Rudelson; R.Vershynin. Sampling from large matrices: An approach through geometric functional analysis.
- [2] Daniel W. Stroock. *Probability theory: an analytic view.* The Press Syndicate of the University of Cambridge, Cambridge; New York, 1993.