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1 Invertibility of Subgaussian Matrices

Let A be an n × n subgaussian matrix (entries are i.i.d. subgaussian r.v’s
with variance 1). There are two reasons for the invertibility of A, depending
on the nature of the unit vector on which A is acting – either compressible
or incompressible. We recall that compressible vectors are those whose dis-
tance is at most some constant ρ from the set of (δn)-sparse vectors, and
incompressible vectors are those that are not compressible. It is obvious
that the unit sphere Sn−1 is the disjoint union of the compressible vectors
(Comp) and the incompressible vectors (Incomp). We have the following
lemmas for A Gaussian.

Lemma 1 (Compressible). P(infx∈Comp ‖Ax‖2 ≤ C
√

n) ≤ exp (−cn).

Lemma 2 (Incompressible). Let X1, · · · , Xn be the rows of A and Hn=span(X1, · · · , Xn−1).
Then, for ǫ > 0,

P(infx∈Incomp ‖Ax‖2 <
Cǫ√

n
) ≤ C P(dist(Xn, Hn) < ǫ).

It turns out that both lemmas also hold for subgaussian matrices.
For Gaussian matrices, P(dist(Xn, Hn) < ǫ) ∼ ǫ, where Xn is a random
Gaussian vector and Hn is a hyperplane. Note that Xn and Hn are inde-
pendent because of the independence of each row. Then, the probability for
incompressible vectors is ≤ C ǫ, and thus

P(sn(A) <
ǫ√
n

) ≤ exp (−cn) + C ǫ.

In particular, sn(A) ∼ 1/
√

n with high probability.
Now, the distance bound has to be proved for subgaussian A. Let X∗ be a
unit vector orthogonal to Hn (in particular, X∗ is orthogonal to X1, · · · , Xn−1).
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Such X∗ is called a random normal vector. We leave the following result
as an exercise:

dist(Xn, Hn) ≥ | 〈X∗, Xn〉 |. (Ex)

Note that X∗ and Xn are independent. We will condition on X∗(i.e. fix
X∗).
Let X∗ = (a1, · · · , an) be fixed, Xn = (ξ1, · · · , ξn) be composed of i.i.d.
r.v’s. Then,

〈 X∗, Xn 〉 =
n

∑

k=1

ak ξk

is a sum of independent random vectors. Our goal is to find an upper bound
for P(|∑n

k=1
ak ξk| < ǫ).

2 Small Ball Probabilities

Consider a sum of independent r.v’s S =

n
∑

k=1

ak ξk, where ξk are mean zero

i.i.d. r.v’s, and a = (a1, · · · , an) ∈ R
n.

Exercise: Consider the special case where ξk = ±1 so that S =

n
∑

k=1

± ak.

How is S distributed?
• Large Deviation Theory: S is concentrated around its mean (so in this
case, around 0).
• Small Ball Probability: This theory gives lower bounds on its mean (anti-
concentration). Define the small ball(ǫ-ball) probability with respect to
a by

pǫ(a) := sup
v∈R

P(|S − v| < ǫ).

Then we want to find pǫ(a) ≤?.
For ξ′ks Gaussian, S is also Gaussian. So pǫ(a) ≤ ∼ ǫ. However, this

estimate fails for ± 1 sums: take a = (1, 1, · · · , 1) and S =
n

∑

1

± 1. Then,

P(S = 0) ∼ 1√
n

because the number of choices for cancelation(half +’s and

half -’s) is equal to
(

n
n/2

)

. Then,

P(S = 0) =

(

n
n/2

)

2n
∼ 1√

n
.
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Open Question: Is this the worst case?

We will use the Central Limit Theorem (CLT) to approximate the sum
S by a Gaussian random variable, for which the small ball probabilities are
easy to estimate.

Consider a random sum S =
n

∑

k=1

ζk , where ζk are centered independent r.v’s

with finite third moments. Then, the variance of S is σ2 =
n

∑

k=1

E|ζk|2.

The classic CLT says that if σ = 1, then S ∼ N(0, 1). Here, we will use
another version of the CLT.

Let g be standard Gaussian (i.e. g ∼ N(0, 1)).

Theorem 3 (Central Limit Theorem (Berry-Esseén) ). Assume σ = 1.
Then ∀ t > 0,

|P(S < t) − P(g < t)| ≤ C
n

∑

k=1

E|ζk|3.

See [2].

We use this for S =
n

∑

k=1

ak ξk so that ζk = akζk. Then,

σ2 =
n

∑

k=1

a2

k E|ξk|2 = ‖a‖2

2,

so that σ = ‖a‖2.

Also,
n

∑

k=1

E|ζk|3 . ‖a‖3

3.

Corollary 4 (CLT). Assume ‖a‖2 = 1. Then,

∀ t > 0, |P(S < t) − P(g < t)| ≤ C‖a‖3

3.

Remark : The estimate using the third moment is best when a is well-spread
and worst when peaked(in which case ‖a‖2 = ‖a‖3).

Exercise: pǫ(a) ≤ pǫ(Pσ(a)), where Pσ : R
n → R

σ is a projection onto
coordinates in σ.

Intuitively, CLT is better for spread vectors because ‖a‖3 is smaller.
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3 Central Limit Theorem for Incompressible Vectors

If a is incompressible, then a has ∼ n coordinates ∼ 1√
n
. That is, ∃ σ ⊂

{1, · · · , n} : |σ| ≥ cn and c1√
n
≤ |ak| ≤ c2√

n
∀ k ∈ σ.

We can restrict a onto σ by the exercise above. Then, if ‖a‖2 = 1, we have
‖Pσa‖2 ∼ 1. (We are restricting incompressible a onto its spread portion.)
By Corollary 4, we have that, in particular,

|P(|S − v| < t) − P(|g − v| < t)| ≤ 2C‖a‖3

3

because the density of g is bounded above by 1√
2π

≤ 1 so that P(|g − v| <

ǫ) ≤ ǫ. Then, P(|S − v| < ǫ) ≤ ǫ + 2C‖a‖3

3
.

Then,

pǫ(a) ≤ pǫ(Pσa) ≤ ǫ + 2C‖Pσa‖3

3 . ǫ +
1√
n

since |ak| ∼ 1√
n
.

Corollary 5 (SBP for Incompressible Vectors). If a is incompressible, then

pǫ(a) ≤ C(ǫ + 1√
n
.

Remark :

(1) This is the best possible result because of the ±1-sum case.

(2) This fails for sparse vectors: as a counterexample, take a = (1, 1, 0, 0, · · · , 0).
Then, P(

∑±ak = 0) = 1

2
.

4 Random Normal Vectors are incompressible

We can control random normal X∗ via the random matrix A′ := A\last row
= rows(X1, · · · , Xn−1). Recall that X∗ is orthogonal to all X1, · · · , Xn−1.
So X∗ ∈ kerA′, and

A′ X∗ = 0.

Thus, if A′ is invertible on some subset S of the unit sphere, then X∗ /∈ S.
A′, similarly to A, is invertible on the set of compressible vectors. Hence,
X∗ ∈ Incomp with high probability.

Corollary 6. With probability ≥ 1 − exp (−cn), X∗ is incompressible.

4



5 Distance Bound

P(dist(Xn, Hn) < ǫ) ≤ P(|〈X∗, Xn〉| < ǫ)

= EX1,··· ,Xn−1
PXn

(|〈X∗, Xn〉| < ǫ and X∗ ∈ Incomp| given X1, · · · , Xn−1)+P(X∗ ∈ Comp).

By Corollary 6, if X∗ ∈ Comp, then P(|〈X∗, Xn〉| < ǫ) ≤ C(ǫ + 1√
n
). So,

P(dist(Xn, Hn) < ǫ) ≤ C(ǫ +
1√
n

+ exp (−cn).

Theorem 7 (Distance). P(dist(Xn, Hn) < ǫ) ≤ C(ǫ + 1√
n
.

It follows that

Theorem 8 (sn(A)). Let A be an n×n subgaussian random matrix. Then,

∀ ǫ > 0,

P(sn(A) ≤ ǫ√
n

) ≤ C(ǫ +
1√
n

).

In particular, sn(A) ∼ 1√
n

with high probability.

See [1].
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