Non-Asymptotic Theory of Random Matrices

Lecture 18: Strong invertibility of subgaussian matrices and Small ball probability via arithmetic progression

Lecturer: Roman Vershynin

Scribe: Yuji Nakatsukasa

Thursday, March 6th, 2007

1 Strong invertibility of subgaussian matrices

In the last lecture, we derived an estimate for the smallest singular value of a subgaussian random matrix;

Theorem 1. Let A be a $n \times n$ subgaussian matrix. Then, for any $\epsilon>0$,

$$
\begin{equation*}
\mathbb{P}\left(s_{n}(A)<\frac{\varepsilon}{\sqrt{n}}\right) \leq c \varepsilon+C n^{\frac{-1}{2}} \tag{1}
\end{equation*}
$$

In particular, this implies $s_{n}(A) \sim \frac{1}{\sqrt{n}}$ with high probability. However, (1) cannot show $\mathbb{P}\left(s_{n}(A)<\frac{\varepsilon}{\sqrt{n}}\right) \rightarrow 0$ as $\epsilon \rightarrow 0$ because of the $C n^{\frac{-1}{2}}$ term. If $s_{n}(A) \simeq 0$, then the matrix is not invertible. We want to know whether $C n^{\frac{-1}{2}}$ can be removed or not.

Question. Can the term $C n^{\frac{-1}{2}}$ in (1) be removed?

- Yes, for Gaussian matrices [3], [9]
- No, for Bernoulli matrices.

It cannot be removed for Bernoulli matrices, since $P_{n}=\mathbb{P}\left(s_{n}(A)=0\right)=\mathbb{P}(A$ is singular >0, because two first row of A are equal with probability $\left(\frac{1}{2}\right)^{n}$. Therefore, we know

$$
P_{n} \geq\left(\frac{1}{2}\right)^{n}
$$

Then we want to estimate an upper bound for P_{n}.

Question. Estimate of an upper bound for P_{n} ?
There is a conjecture for this question by Erdös:
Conjecture. $P_{n} \leq\left(\frac{1}{2}+o(1)\right)^{n}$.
It is nontrivial to prove $P_{n} \rightarrow 0$ as $n \rightarrow \infty[6]$. This was proved in 1995 in [7]:

Theorem 2.

$$
P_{n} \leq c^{n} \text { for some constant } c<1
$$

So far, the best known bound is by Tao and Vu in [12]:

Theorem 3.

$$
P_{n} \leq\left(\frac{3}{4}+o(1)\right)^{n}
$$

This bound is much better than $C n^{\frac{1}{2}}$ seen in (1). Based on these results, Spielman and Teng[10] conjectured that the estimate of $s_{n}(A)$ can be improved:
Conjecture. For a $n \times n$ Bernoulli random matrix A,

$$
P\left(s_{n}(A) \leq \frac{\varepsilon}{\sqrt{n}}\right) \leq \varepsilon+c^{n}, \quad c<1
$$

Recently Rudelson and Vershynin[8] proved that this holds for all subgaussian matrices, up to an absolute constant:

Theorem 4 (Strong Invertibility Theorem). Let A be a $n \times n$ subgaussian matrix. Then,

$$
\mathbb{P}\left(s_{n}(A) \leq \frac{\varepsilon}{\sqrt{n}}\right) \leq C \varepsilon+c^{n}
$$

where $C>0$ and $0<c<1$.
Letting $\varepsilon=0$ in this Theorem, we get $\mathbb{P}(A$ is nonsingular $) \leq c^{n}$, which includes the result of [7].
We observe that all these results boil down to small ball probability, which we discuss next.

2 Littlewood-Offord problem

We want to bound from above the small ball probability

$$
P_{\varepsilon}(a)=\sup _{v \in \mathbb{R}} \mathbb{P}(|S-v| \leq \varepsilon)
$$

where

$$
S=\sum_{k=1}^{n} a_{k} \xi_{k}
$$

ξ_{1}, \cdots, ξ_{n} are independent identically distributed random varibles, and $\left(a_{1}, \cdots, a_{n}\right)=$ $a \in \mathbb{R}^{n}$.

If $P_{\epsilon}(a)$ is small, that means the random sum S is well spread in \mathbb{R}.
For Gaussian ξ_{k}, we know $P_{\varepsilon}(a) \sim \varepsilon /\|a\|_{2}$.
However, for most other distributions evaluation of $P_{\varepsilon}(a)$ is hard. For example, for Bernoulli $\xi_{k}, P_{\varepsilon}(a)$ depends on a, as follows:

1. $a=(1,1,0,0, \cdots, 0): P_{\varepsilon}(a)\left(=P_{0}(a)\right)=\frac{1}{2}$-this is bad.
2. $a=(1,1,1, \cdots, 1): P_{0}(a) \sim n^{1 / 2}$. In fact, a classical result of Littlewood and Offord, strengthened by Erdos[1] proves that if $\left|a_{k}\right| \geq 1 \quad \forall k$, then $P_{1}(a) \leq \leq n^{-1 / 2}$. This is sharp for $a_{k}=1$.
3. $a=(1,2,3, \cdots, n): P_{0}(a) \sim n^{3 / 2}$.

This shows the result in [1] can be further reduced in this case. In [2], [4] it is proved that if $\left|a_{j}-a_{k}\right| \geq 1$ for $j \neq k$, then the small ball probability can be even smaller:

$$
P_{1}(a) \leq n^{-3 / 2}
$$

How to further reduce the small ball probability is an open question. Since $P_{0}(a)$ is big when there are many cancellations in $\sum_{k=1}^{n} a_{k} \xi_{k}$, we want to know when this happens. Perhaps this occurs then coefficients a_{k} are arithmetically comparable. Tao and $\mathrm{Vu}[11]$ recently suggested studying the following phenomenon:

$$
\text { If } P_{0}(a) \text { is large, then a has a rich additive structure. }
$$

Here, holding a rich additive structure means a enbeds into a short arithmetic progression. Rudelson and Vershynin[8] proved the following:

The coefficients of a are essentially contained in an arithmetic progression of length $\leq \frac{1}{P_{\varepsilon}(a)}$.
Here, "essentially" means most coefficients are near elements of the arithmetic progression.

Example 5.

- $(1,1, \cdots, 1) \hookrightarrow$ embeds into arithmetic progression of length 1.
- $(1,2, \cdots, n) \hookrightarrow$ embeds into arithmetic progression of length n.
- $(1 / 2,1 / 3,1, \cdots, 1) \hookrightarrow$ embeds into arithmetic progression of length $6 n$.
- $\left(p_{1} / q_{1}, p_{2} / q_{2} \cdots, p_{n} / q_{n}\right) \hookrightarrow$ embeds into arithmetic progression of length $L C D(a) \cdot n$.

Here we give the definition of the essential least common denominator of real numbers:

Definition 6 (Essential LCD). Let $\alpha \in(0,1)$ and $\kappa \geq 0$. The essential least common denominator $D(a)=D_{\alpha, \kappa}(a)$ of a vector $a \in \mathbb{R}^{n}$ is defined as the infimum of $t>0$ such that all except κ coordinates of the vector ta are of distance at most α from nonzero integers.

Theorem 7 (Small Ball Probability[8]). for any random variables $\xi_{1}, \cdots \xi_{n}$, Assume that $a=\left(a_{1}, a_{2}, \cdots, a_{n}\right)$ satisfies

$$
K_{1} \leq\left|a_{k}\right| \leq K_{2} \quad \forall k
$$

Then, $\forall \alpha, \kappa, \varepsilon$,

$$
P_{\varepsilon}(a) \leq \frac{1}{\sqrt{\kappa}}\left(\varepsilon+\frac{1}{D_{\alpha, \kappa}(a)}\right)+C e^{-c \alpha^{2} \kappa}
$$

Example 8. Let $\alpha=0.001, \kappa=0.001 n$.

1. $D(a) \leq$ const. $\rightarrow P_{0}(a) \leq n^{-1 / 2}$.
2. If the values of a are spread uniformly between two variables 1 and 2,

$$
a=\left(1,1+\frac{1}{n}, 1+\frac{2}{n}, \cdots, 2\right) \rightarrow D(a)=n, P_{\varepsilon}(a) \leq n^{-3 / 2}
$$

3. If $D(a)$ is larger $\rightarrow P_{\varepsilon}(a)$ is smaller.

In order to prove Small Ball Probability, in the next section we introduce Esseen's Lemma.

3 Esseen's Lemma

Esseen's Lemma bounds Small Ball Probability via charateristic functions. The charecteristic function $\phi(t)$ of a random variable X is defined as

$$
\phi(t)=\mathbb{E} e^{i X t}
$$

Lemma 9 (Esseen's Lemma[5]).

$$
\sup _{v \in \mathbb{R}} \mathbb{P}(|x-v| \leq 1) \leq C \int_{-1}^{1}|\phi(t)| d t
$$

Proof. we use Fourier Transform:

$$
\hat{f}(t)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} f(x) e^{-i x t} d x
$$

The inverse Fourier Transform is

$$
f(x)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} \hat{f}(t) e^{i x t} d t
$$

Assume (*)

$$
\begin{gathered}
f(x) \geq g(x) \\
\text { where } g(x)=\left\{\begin{array}{ll}
c, & |x| \leq c \\
c, & |x|>c
\end{array}\right\} .
\end{gathered}
$$

Then,

$$
\mathbb{E} f(X) \geq \mathbb{E} g(X)=c \mathbb{E} 1\{|X| \leq c\}=c \mathbb{P}(|X| \leq c)
$$

On the other hand,

$$
\begin{aligned}
\mathbb{E} f(X) & \sim \mathbb{E} \int_{\mathbb{R}} \hat{f}(t) e^{i X t} d t \\
& =\int_{\mathbb{R}} \hat{f}(t) \phi(t) d t \\
& \lesssim \int_{-1}^{1}|\phi(t)| d t
\end{aligned}
$$

where the last inequality holds provided that

$$
\text { supp } \hat{f} \subseteq[-1,1], \text { and }\|\hat{f}\|_{\infty} \leq C .(\hat{*})
$$

Therefore, we have proved :
If $\exists f$ satisfying $(*),(\hat{*})$, then

$$
\mathbb{P}(|X|<c) \lesssim \int_{-1}^{1}|\phi(t)| d t
$$

It is an exersize to prove the existence of a function f satisfying (*), (奥) . In order to complete the proof,

- To prove this for $|X-v|$ instead of $|X|$, we translate f by v, and redo the argument. ($|\hat{f}|$ will not change.)
- To prove for 1 instead of c , divide $[0,1]$ into $1 / c$ intervals of length c , and sum up the Small Ball Probability.

In the next lecture, we will apply Esseen's Lemma to prove Small Ball Probability(Theorem (7)).

References

[1] P. Erdös. On a lemma of littlewood and offord. Bull. Amer. Math. Soc., 51:898-902, 1945.
[2] P. Erdös and Leo Moser. Elementary problems and solutions: Solutions:. Amer. Math. Monthly, 54(4):229-230, 1947.
[3] Alan Edelman. Eigenvalues and condition numbers of random matrices. SIAM J. Matrix Anal. Appl., 9(4):543-560, 1988.
[4] A.; Szemeredi E. Erdos, P.; Sarkozi. On divisibility properties of sequences of integers. Number Theory, 43:35-49, 1970.
[5] C. G. Esseen. On the concentration function of a sum of independent random variables. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 9(37):290-308, 1968.
[6] G.Halasz. Estimates for the concentration function of combinatorial number theory and probability. Period. Math. Hungar., 8(3-4):197211, 1977.
[7] J. Kahn, J. Komlós, and E. Szemerédi. On the probability that a random ± 1-matrix is singular. JOT, 8:223, 1995.
[8] Mark Rudelson and Roman Vershynin. Preprint. 2006.
[9] Daniel A Sankar. A, Spielman and Shang-Hua Teng. Smoothed analysis of the condition numbers and growth factors of matrices. SIAM J. Matrix Anal. Appl., 28(2):446-476, 2006.
[10] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms. In Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), pages 597-606, Beijing, 2002. Higher Ed. Press.
[11] T. Tao and V. Vu. Additive Combinatorics. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, NY, 2006.
[12] Terence Tao and Van Vu. On random ± 1 matrices: singularity and determinant. Random Structures Algorithms, 28(1):1-23, 2006.

