## Non-Asymptotic Theory of Random Matrices Lecture 18: Strong invertibility of subgaussian matrices and Small ball probability via arithmetic progression

Lecturer: Roman Vershynin

Scribe: Yuji Nakatsukasa

Thursday, March 6th, 2007

#### **1** Strong invertibility of subgaussian matrices

In the last lecture, we derived an estimate for the smallest singular value of a subgaussian random matrix;

**Theorem 1.** Let A be a  $n \times n$  subgaussian matrix. Then, for any  $\epsilon > 0$ ,

$$\mathbb{P}(s_n(A) < \frac{\varepsilon}{\sqrt{n}}) \le c\varepsilon + Cn^{\frac{-1}{2}} \tag{1}$$

In particular, this implies  $s_n(A) \sim \frac{1}{\sqrt{n}}$  with high probability. However, (1) cannot show  $\mathbb{P}(s_n(A) < \frac{\varepsilon}{\sqrt{n}}) \to 0$  as  $\epsilon \to 0$  because of the  $Cn^{\frac{-1}{2}}$  term. If  $s_n(A) \simeq 0$ , then the matrix is not invertible. We want to know whether  $Cn^{\frac{-1}{2}}$  can be removed or not.

Question. Can the term  $Cn^{\frac{-1}{2}}$  in (1) be removed?

- Yes, for Gaussian matrices [3],[9]
- No, for Bernoulli matrices.

It cannot be removed for Bernoulli matrices, since  $P_n = \mathbb{P}(s_n(A) = 0) = \mathbb{P}(A$ is singular) > 0, because two first row of A are equal with probability  $\left(\frac{1}{2}\right)^n$ . Therefore, we know

$$P_n \ge \left(\frac{1}{2}\right)^n.$$

Then we want to estimate an upper bound for  $P_n$ .

Question. Estimate of an upper bound for  $P_n$ ? There is a conjecture for this question by Erdös:  $Conjecture. P_n \leq \left(\frac{1}{2} + o(1)\right)^n$ . It is nontrivial to prove  $P_n \to 0$  as  $n \to \infty[6]$ . This was proved in 1995 in [7]: Theorem 2.

$$P_n \leq c^n$$
 for some constant  $c < 1$ .

So far, the best known bound is by Tao and Vu in [12]:

Theorem 3.

$$P_n \le \left(\frac{3}{4} + o(1)\right)^n.$$

This bound is much better than  $Cn^{\frac{1}{2}}$  seen in (1). Based on these results, Spielman and Teng[10] conjectured that the estimate of  $s_n(A)$  can be improved:

Conjecture. For a  $n \times n$  Bernoulli random matrix A,

$$P(s_n(A) \le \frac{\varepsilon}{\sqrt{n}}) \le \varepsilon + c^n, \quad c < 1.$$

Recently Rudelson and Vershynin[8] proved that this holds for all subgaussian matrices, up to an absolute constant:

**Theorem 4** (Strong Invertibility Theorem). Let A be a  $n \times n$  subgaussian matrix. Then,

$$\mathbb{P}(s_n(A) \le \frac{\varepsilon}{\sqrt{n}}) \le C\varepsilon + c^n,$$

where C > 0 and 0 < c < 1.

Letting  $\varepsilon = 0$  in this Theorem, we get  $\mathbb{P}(A \text{ is nonsingular}) \leq c^n$ , which includes the result of [7].

We observe that all these results boil down to small ball probability, which we discuss next.

# 2 Littlewood-Offord problem

We want to bound from above the small ball probability

$$P_{\varepsilon}(a) = \sup_{v \in \mathbb{R}} \mathbb{P}(|S - v| \le \varepsilon),$$

where

$$S = \sum_{k=1}^{n} a_k \xi_k;$$

 $\xi_1, \dots, \xi_n$  are independent identically distributed random variables, and  $(a_1, \dots, a_n) = a \in \mathbb{R}^n$ .

If  $P_{\epsilon}(a)$  is small, that means the random sum S is well spread in  $\mathbb{R}$ . For Gaussian  $\xi_k$ , we know  $P_{\epsilon}(a) \sim \epsilon/||a||_2$ .

However, for most other distributions evaluation of  $P_{\varepsilon}(a)$  is hard. For example, for Bernoulli  $\xi_k$ ,  $P_{\varepsilon}(a)$  depends on a, as follows:

- 1.  $a = (1, 1, 0, 0, \dots, 0) : P_{\varepsilon}(a) (= P_0(a)) = \frac{1}{2}$  -this is bad.
- 2.  $a = (1, 1, 1, \dots, 1) : P_0(a) \sim n^{1/2}$ . In fact, a classical result of Littlewood and Offord, strengthened by Erdos[1] proves that if  $|a_k| \ge 1 \quad \forall k$ , then  $P_1(a) \le n^{-1/2}$ . This is sharp for  $a_k = 1$ .

3. 
$$a = (1, 2, 3, \cdots, n) : P_0(a) \sim n^{3/2}$$

This shows the result in [1] can be further reduced in this case. In [2],[4] it is proved that if  $|a_j - a_k| \ge 1$  for  $j \ne k$ , then the small ball probability can be even smaller:

$$P_1(a) \le n^{-3/2}.$$

How to further reduce the small ball probability is an open question. Since  $P_0(a)$  is big when there are many cancellations in  $\sum_{k=1}^{n} a_k \xi_k$ , we want to know when this happens. Perhaps this occurs then coefficients  $a_k$  are arithmetically comparable. Tao and Vu[11] recently suggested studying the following phenomenon:

If  $P_0(a)$  is large, then a has a rich additive structure.

Here, holding a rich additive structure means a enbeds into a short arithmetic progression. Rudelson and Vershynin[8] proved the following:

The coefficients of a are essentially contained in an arithmetic progression of length 
$$\leq \frac{1}{P_{\varepsilon}(a)}$$
.

Here, "essentially" means most coefficients are near elements of the arithmetic progression.

#### Example 5.

- $(1, 1, \dots, 1) \hookrightarrow$  embeds into arithmetic progression of length 1.
- $(1, 2, \dots, n) \hookrightarrow$  embeds into arithmetic progression of length n.
- $(1/2, 1/3, 1, \dots, 1) \hookrightarrow$  embeds into arithmetic progression of length 6n.
- $(p_1/q_1, p_2/q_2 \cdots, p_n/q_n) \hookrightarrow$  embeds into arithmetic progression of length  $LCD(a) \cdot n$ .

Here we give the definition of the essential least common denominator of real numbers:

**Definition 6** (Essential LCD). Let  $\alpha \in (0,1)$  and  $\kappa \geq 0$ . The essential least common denominator  $D(a) = D_{\alpha,\kappa}(a)$  of a vector  $a \in \mathbb{R}^n$  is defined as the infimum of t > 0 such that all except  $\kappa$  coordinates of the vector ta are of distance at most  $\alpha$  from nonzero integers.

**Theorem 7** (Small Ball Probability[8]). for any random variables  $\xi_1, \dots, \xi_n$ , Assume that  $a = (a_1, a_2, \dots, a_n)$  satisfies

$$K_1 \le |a_k| \le K_2 \quad \forall k$$

Then,  $\forall \alpha, \kappa, \varepsilon$ ,

$$P_{\varepsilon}(a) \leq \frac{1}{\sqrt{\kappa}} \left( \varepsilon + \frac{1}{D_{\alpha,\kappa}(a)} \right) + Ce^{-c\alpha^{2}\kappa}.$$

**Example 8.** Let  $\alpha = 0.001, \kappa = 0.001n$ .

- 1.  $D(a) \leq const. \to P_0(a) \leq n^{-1/2}.$
- 2. If the values of a are spread uniformly between two variables 1 and 2,

$$a = (1, 1 + \frac{1}{n}, 1 + \frac{2}{n}, \dots, 2) \rightarrow D(a) = n, \ P_{\varepsilon}(a) \le n^{-3/2}$$

3. If D(a) is larger  $\rightarrow P_{\varepsilon}(a)$  is smaller.

In order to prove Small Ball Probability, in the next section we introduce Esseen's Lemma.

## 3 Esseen's Lemma

Esseen's Lemma bounds Small Ball Probability via characteristic functions. The characteristic function  $\phi(t)$  of a random variable X is defined as

$$\phi(t) = \mathbb{E}e^{iXt}$$

Lemma 9 (Esseen's Lemma[5]).

$$\sup_{v \in \mathbb{R}} \mathbb{P}(|x - v| \le 1) \le C \int_{-1}^{1} |\phi(t)| dt.$$

Proof. we use Fourier Transform:

$$\hat{f}(t) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} f(x) e^{-ixt} dx$$

The inverse Fourier Transform is

$$f(x) = \frac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} \hat{f}(t) e^{ixt} dt.$$

Assume (\*)

$$f(x) \ge g(x),$$
  
where  $g(x) = \left\{ \begin{array}{l} c, & |x| \le c \\ c, & |x| > c \end{array} \right\}.$ 



Then,

$$\mathbb{E}f(X) \ge \mathbb{E}g(X) = c\mathbb{E}1\{|X| \le c\} = c\mathbb{P}(|X| \le c).$$

On the other hand,

$$\mathbb{E}f(X) \sim \mathbb{E} \int_{\mathbb{R}} \hat{f}(t) e^{iXt} dt$$
$$= \int_{\mathbb{R}} \hat{f}(t) \phi(t) dt$$
$$\lesssim \int_{-1}^{1} |\phi(t)| dt,$$

where the last inequality holds provided that

$$supp f \subseteq [-1, 1], and ||f||_{\infty} \leq C. (\hat{*})$$

Therefore, we have proved : If  $\exists f$  satisfying  $(*), (\hat{*})$ , then

$$\mathbb{P}(|X| < c) \lesssim \int_{-1}^{1} |\phi(t)| dt.$$

It is an exersize to prove the existence of a function f satisfying  $(*), (\hat{*})$ . In order to complete the proof,

- To prove this for |X v| instead of |X|, we translate f by v, and redo the argument.  $(|\hat{f}|$  will not change.)
- To prove for 1 instead of c, divide [0, 1] into 1/c intervals of length c, and sum up the Small Ball Probability. ■



In the next lecture, we will apply Esseen's Lemma to prove Small Ball Probability(Theorem (7)).

## References

- P. Erdös. On a lemma of littlewood and offord. Bull. Amer. Math. Soc., 51:898–902, 1945.
- [2] P. Erdös and Leo Moser. Elementary problems and solutions: Solutions: Amer. Math. Monthly, 54(4):229–230, 1947.
- [3] Alan Edelman. Eigenvalues and condition numbers of random matrices. SIAM J. Matrix Anal. Appl., 9(4):543–560, 1988.
- [4] A.; Szemeredi E. Erdos, P.; Sarkozi. On divisibility properties of sequences of integers. *Number Theory*, 43:35–49, 1970.
- [5] C. G. Esseen. On the concentration function of a sum of independent random variables. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 9(37):290-308, 1968.

- [6] G.Halasz. Estimates for the concentration function of combinatorial number theory and probability. *Period. Math. Hungar.*, 8(3-4):197– 211, 1977.
- [7] J. Kahn, J. Komlós, and E. Szemerédi. On the probability that a random ±1-matrix is singular. JOT, 8:223, 1995.
- [8] Mark Rudelson and Roman Vershynin. Preprint. 2006.
- [9] Daniel A Sankar. A, Spielman and Shang-Hua Teng. Smoothed analysis of the condition numbers and growth factors of matrices. SIAM J. Matrix Anal. Appl., 28(2):446–476, 2006.
- [10] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms. In Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), pages 597–606, Beijing, 2002. Higher Ed. Press.
- [11] T. Tao and V. Vu. Additive Combinatorics. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, NY, 2006.
- [12] Terence Tao and Van Vu. On random ±1 matrices: singularity and determinant. Random Structures Algorithms, 28(1):1–23, 2006.