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1 Strong invertibility of subgaussian matrices

In the last lecture, we derived an estimate for the smallest singular value of
a subgaussian random matrix;

Theorem 1. Let A be a n× n subgaussian matrix. Then, for any ε > 0,

P(sn(A) <
ε√
n

) ≤ cε + Cn
−1
2 (1)

In particular, this implies sn(A) ∼ 1√
n

with high probability. However,

(1) cannot show P(sn(A) < ε√
n
) → 0 as ε → 0 because of the Cn

−1
2 term.

If sn(A) ' 0, then the matrix is not invertible. We want to know whether
Cn

−1
2 can be removed or not.

Question. Can the term Cn
−1
2 in (1) be removed?

• Yes, for Gaussian matrices [3],[9]

• No, for Bernoulli matrices.

It cannot be removed for Bernoulli matrices, since Pn = P(sn(A) = 0) = P(A

is singular) > 0, because two first row of A are equal with probability
(

1
2

)n

.

Therefore, we know

Pn ≥
(

1
2

)n

.

Then we want to estimate an upper bound for Pn.

Question. Estimate of an upper bound for Pn?
There is a conjecture for this question by Erdös:
Conjecture. Pn ≤

(
1
2 + o(1)

)n.
It is nontrivial to prove Pn → 0 as n → ∞[6]. This was proved in 1995 in
[7]:
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Theorem 2.
Pn ≤ cn for some constant c < 1.

So far, the best known bound is by Tao and Vu in [12]:

Theorem 3.

Pn ≤
(

3
4

+ o(1)
)n

.

This bound is much better than Cn
1
2 seen in (1). Based on these re-

sults, Spielman and Teng[10] conjectured that the estimate of sn(A) can be
improved:
Conjecture. For a n× n Bernoulli random matrix A,

P (sn(A) ≤ ε√
n

) ≤ ε + cn, c < 1.

Recently Rudelson and Vershynin[8] proved that this holds for all subgaus-
sian matrices, up to an absolute constant:

Theorem 4 (Strong Invertibility Theorem). Let A be a n× n subgaussian
matrix. Then,

P(sn(A) ≤ ε√
n

) ≤ Cε + cn,

where C > 0 and 0 < c < 1.

Letting ε = 0 in this Theorem, we get P(A is nonsingular) ≤ cn, which
includes the result of [7].
We observe that all these results boil down to small ball probability, which
we discuss next.

2 Littlewood-Offord problem

We want to bound from above the small ball probability

Pε(a) = sup
v∈R

P(|S − v| ≤ ε),

where

S =
n∑

k=1

akξk,

ξ1, · · · , ξn are independent identically distributed random varibles, and (a1, · · · , an) =
a ∈ Rn.
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If Pε(a) is small, that means the random sum S is well spread in R.
For Gaussian ξk, we know Pε(a) ∼ ε/||a||2.
However, for most other distributions evaluation of Pε(a) is hard. For ex-
ample, for Bernoulli ξk, Pε(a) depends on a, as follows:

1. a = (1, 1, 0, 0, · · · , 0) : Pε(a)(= P0(a)) = 1
2 -this is bad.

2. a = (1, 1, 1, · · · , 1) : P0(a) ∼ n1/2. In fact, a classical result of Little-
wood and Offord, strengthened by Erdos[1] proves that if |ak| ≥ 1 ∀k,
then P1(a) ≤≤ n−1/2. This is sharp for ak = 1.

3. a = (1, 2, 3, · · · , n) : P0(a) ∼ n3/2.

This shows the result in [1] can be further reduced in this case. In [2],[4] it
is proved that if |aj − ak| ≥ 1 for j 6= k, then the small ball probability can
be even smaller:

P1(a) ≤ n−3/2.

How to further reduce the small ball probability is an open question. Since
P0(a) is big when there are many cancellations in

∑n
k=1 akξk, we want to

know when this happens. Perhaps this occurs then coefficients ak are arith-
metically comparable. Tao and Vu[11] recently suggested studying the fol-
lowing phenomenon:

If P0(a) is large, then a has a rich additive structure.

Here, holding a rich additive structure means a enbeds into a short arith-
metic progression. Rudelson and Vershynin[8] proved the following:

The coefficients of a are essentially contained in an

arithmetic progression of length≤ 1
Pε(a)

.

Here, ”essentially” means most coefficients are near elements of the arith-
metic progression.

Example 5.

• (1, 1, · · · , 1) ↪→ embeds into arithmetic progression of length 1.

• (1, 2, · · · , n) ↪→ embeds into arithmetic progression of length n.

• (1/2, 1/3, 1, · · · , 1) ↪→ embeds into arithmetic progression of length 6n.

• (p1/q1, p2/q2 · · · , pn/qn) ↪→ embeds into arithmetic progression of length
LCD(a) · n.
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Here we give the definition of the essential least common denominator
of real numbers:

Definition 6 (Essential LCD). Let α ∈ (0, 1) and κ ≥ 0 . The essential
least common denominator D(a) = Dα,κ(a) of a vector a ∈ Rn is defined as
the infimum of t > 0 such that all except κ coordinates of the vector ta are
of distance at most α from nonzero integers.

Theorem 7 (Small Ball Probability[8]). for any random variables ξ1, · · · ξn,
Assume that a = (a1, a2, · · · , an) satisfies

K1 ≤ |ak| ≤ K2 ∀k.

Then, ∀α, κ, ε,

Pε(a) ≤ 1√
κ

(
ε +

1
Dα,κ(a)

)
+ Ce−cα2κ.

Example 8. Let α = 0.001, κ = 0.001n.

1. D(a) ≤ const. → P0(a) ≤ n−1/2.

2. If the values of a are spread uniformly between two variables 1 and 2,

a = (1, 1 +
1
n

, 1 +
2
n

, · · · , 2) → D(a) = n, Pε(a) ≤ n−3/2.

3. If D(a) is larger → Pε(a) is smaller.

In order to prove Small Ball Probability, in the next section we introduce
Esseen’s Lemma.

3 Esseen’s Lemma

Esseen’s Lemma bounds Small Ball Probability via charateristic functions.
The charecteristic function φ(t) of a random variable X is defined as

φ(t) = EeiXt.

Lemma 9 (Esseen’s Lemma[5]).

sup
v∈R

P(|x− v| ≤ 1) ≤ C

∫ 1

−1
|φ(t)|dt.
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Proof. we use Fourier Transform:

f̂(t) =
1√
2π

∫

R
f(x)e−ixtdx.

The inverse Fourier Transform is

f(x) =
1√
2π

∫

R
f̂(t)eixtdt.

Assume (>)
f(x) ≥ g(x),

where g(x) =
{

c, |x| ≤ c
c, |x| > c

}
.

Then,
Ef(X) ≥ Eg(X) = cE1{|X| ≤ c} = cP(|X| ≤ c).

On the other hand,

Ef(X) ∼ E
∫

R
f̂(t)eiXtdt

=
∫

R
f̂(t)φ(t)dt

.
∫ 1

−1
|φ(t)|dt,
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where the last inequality holds provided that

suppf̂ ⊆ [−1, 1], and ||f̂ ||∞ ≤ C. (>̂)

Therefore, we have proved :
If ∃f satisfying (>), (>̂), then

P(|X| < c) .
∫ 1

−1
|φ(t)|dt.

It is an exersize to prove the existence of a function f satisfying (>), (>̂).
In order to complete the proof,

• To prove this for |X − v| instead of |X|, we translate f by v, and redo
the argument. (|f̂ | will not change.)

• To prove for 1 instead of c, divide [0, 1] into 1/c intervals of length c,
and sum up the Small Ball Probability. ¥

In the next lecture, we will apply Esseen’s Lemma to prove Small Ball
Probability(Theorem (7)).
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