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1 Strong invertibility of subgaussian matrices

In the last lecture, we derived an estimate for the smallest singular value of
a subgaussian random matrix;

Theorem 1. Let A be a n X n subgaussian matriz. Then, for any e > 0,

P(sn(A) < %) <ce+Cn7 (1)
In particular, this implies s, (A) ~ % with high probability. However,

(1) cannot show P(s,(A) < %) — 0 as € — 0 because of the Cn2 term.
If s,(A) ~ 0, then the matrix is not invertible. We want to know whether
Cn3 can be removed or not.
Question. Can the term Cn? in (1) be removed?

e Yes, for Gaussian matrices [3],[9]

e No, for Bernoulli matrices.
It cannot be removed for Bernoulli matrices, since P, = P(s,(A) =0) = P(4

n

1
is singular) > 0, because two first row of A are equal with probability 3

1 n
P.>1=) .
- (2)

Then we want to estimate an upper bound for P,.

Therefore, we know

Question. Estimate of an upper bound for P,?

There is a conjecture for this question by Erdos:

Conjecture. P, < (1 + o(l))n.

It is nontrivial to prove P,, — 0 as n — o0[6]. This was proved in 1995 in
[7):



Theorem 2.
P, <" for some constant ¢ < 1.

So far, the best known bound is by Tao and Vu in [12]:

Theorem 3.
3 n

This bound is much better than Cn? seen in (1). Based on these re-
sults, Spielman and Teng[10] conjectured that the estimate of s,,(A) can be
improved:

Conjecture. For a n x n Bernoulli random matrix A,

Recently Rudelson and Vershynin[8] proved that this holds for all subgaus-
sian matrices, up to an absolute constant:

Theorem 4 (Strong Invertibility Theorem). Let A be a n x n subgaussian
matriz. Then,

P(sp(4) < —=) < Ce + ",

:‘m

where C >0 and 0 < c < 1.

Letting € = 0 in this Theorem, we get P(A is nonsingular) < ¢", which
includes the result of [7].
We observe that all these results boil down to small ball probability, which
we discuss next.

2 Littlewood-Offord problem

We want to bound from above the small ball probability

P.(a) = supP(|S — v| <o),

veER
where
n
S=>"ap,
k=1
&1, , &, are independent identically distributed random varibles, and (ay, - -+ ,ay) =
a € R".



If P.(a) is small, that means the random sum S is well spread in R.

For Gaussian &, we know P.(a) ~ ¢/||al2.

However, for most other distributions evaluation of P-(a) is hard. For ex-
ample, for Bernoulli &, P-(a) depends on a, as follows:

1. a=(1,1,0,0,---,0) : P-(a)(= Py(a)) = 5 -this is bad.

2. a=(1,1,1,---,1) : Py(a) ~ n'/2. In fact, a classical result of Little-
wood and Offord, strengthened by Erdos[1] proves that if |a;| > 1 Vk,
then Pj(a) << n~1/2. This is sharp for a; = 1.

3. a=(1,2,3,---,n) : Py(a) ~n®2.

This shows the result in [1] can be further reduced in this case. In [2],[4] it
is proved that if |a; — ag| > 1 for j # k, then the small ball probability can
be even smaller:

Pl(a) < n_3/2.

How to further reduce the small ball probability is an open question. Since
Py(a) is big when there are many cancellations in Y ,_; axlg, we want to
know when this happens. Perhaps this occurs then coefficients a; are arith-
metically comparable. Tao and Vu[l1] recently suggested studying the fol-
lowing phenomenon:

If Py(a) is large, then a has a rich additive structure.

Here, holding a rich additive structure means a enbeds into a short arith-
metic progression. Rudelson and Vershynin[8] proved the following:

The coefficients of a are essentially contained in an

1
arithmetic progression of length< .
P.(a)

Here, ”essentially” means most coefficients are near elements of the arith-
metic progression.

Example 5.
e (1,1,---,1) < embeds into arithmetic progression of length 1.
e (1,2,---,n) — embeds into arithmetic progression of length n.
e (1/2,1/3,1, -+ ,1) < embeds into arithmetic progression of length 6n.

(p1/q1,p2/q2 -+ s Pn/qn) — embeds into arithmetic progression of length
LCD(a) - n.



Here we give the definition of the essential least common denominator
of real numbers:

Definition 6 (Essential LCD). Let o € (0,1) and k > 0 . The essential
least common denominator D(a) = Dq (a) of a vector a € R™ is defined as
the infimum of t > 0 such that all except k coordinates of the vector ta are
of distance at most o from monzero integers.

Theorem 7 (Small Ball Probability[8]). for any random variables &1, - - - &y,
Assume that a = (a1,a2,- - ,ay) satisfies

Bﬁ S’aklg‘Kb VEk.
Then, Vo, k, &,

1 1 2
_PE < - - —CQ I‘C‘
@) < 7% ( * Da,n<a>> e

Example 8. Let o = 0.001, x = 0.001n.
1. D(a) < const. — Py(a) < n~ /2.

2. If the values of a are spread uniformly between two variables 1 and 2,

1 2
a=(1,14=,14=---,2) — D(a)=n, P(a) <n %2
n n

3. If D(a) is larger — P-(a) is smaller.

In order to prove Small Ball Probability, in the next section we introduce
Esseen’s Lemma.

3 Esseen’s Lemma

Esseen’s Lemma bounds Small Ball Probability via charateristic functions.
The charecteristic function ¢(t) of a random variable X is defined as

o(t) = Ee' Xt

Lemma 9 (Esseen’s Lemmal5]).

1
supP(jz —v| <1) < C’/ lp(t)|dt.
veER -1



Proof. we use Fourier Transform:

The inverse Fourier Transform is

1 R it
f@)= = [ foear

Assume (%)

f(x) = g(),
_Je frl<e
where g(x) = { e |z|>c }
\f
C
—C C

Then,
Ef(X) 2 Eg(X) = cE1{|X| < ¢} = cP(X]| < o).

On the other hand,
Ef(X) NE/Rf(t)eiXtdt
= [ ot
1
s [ lowia,



where the last inequality holds provided that
suppf C [=1,1], and ||f||e0 < C. (%)

Therefore, we have proved :
If 3f satisfying (%), (%), then
1

P(X| <o) < / 6(8))dt.

-1

~

It is an exersize to prove the existence of a function f satisfying (), ().
In order to complete the proof,

e To prove this for [X — v instead of [ X|, we translate f by v, and redo
the argument. (|f| will not change.)

e To prove for 1 instead of c, divide [0, 1] into 1/c intervals of length c,
and sum up the Small Ball Probability. B

In the next lecture, we will apply Esseen’s Lemma to prove Small Ball
Probability (Theorem (7)).
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