Non-Asymptotic Theory of Random Matrices

Lecture 19: Small Ball Probability via Sum-Sets

Lecturer: Roman Vershynin
Scribe: Blake Hunter

Thursday, March 8, 2007

1 Small Ball Probability via Sum-Sets

Set

$$
S=\sum_{k=1}^{n} a_{k} \xi_{k}
$$

We want to bound the small ball probability,

$$
P_{\epsilon}(a)=\sup _{v} \mathbb{P}(|s-v| \leq \epsilon) \leq ?
$$

Theorem 1 (Esseen Inequality).

$$
\sup _{v} \mathbb{P}(|x-v| \leq 1) \lesssim \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}|\phi(t)| d t
$$

where $\phi(t)=\mathbb{E} \mathrm{e}^{i x t}$ is the characteristic function.
Assumption 2. Assume $1 \leq a_{k} \leq k$ for all k, and let $\epsilon \leq \frac{\pi}{4}$.
By Esseen,

$$
P_{\epsilon}(a) \lesssim \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left|\phi\left(\frac{t}{\epsilon}\right)\right| d t
$$

where

$$
\phi(t)=\mathbb{E} \mathrm{e}^{i s t}=\prod_{k=1}^{n} \phi_{k}(t)
$$

and

$$
\phi_{k}(t)=\mathbb{E} \mathrm{e}^{i a_{k} \xi_{k} t}
$$

are the charactristic functions of $a_{k} \xi_{k}$.

Assumption 3. $\xi_{k}= \pm 1$ (Bernoulli)
In this case,

$$
\begin{gathered}
\phi_{k}(t)=\frac{1}{2}\left(\mathrm{e}^{i a_{k} t}+\mathrm{e}^{-i a_{k} t}\right)=\cos \left(a_{k} t\right) \\
P_{\epsilon}(a) \lesssim \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left|\prod_{k=1}^{n} \cos \left(\frac{a_{k} t}{\epsilon}\right)\right| d t
\end{gathered}
$$

The product over k is always less then or equal to one. It's equal to one when most of the $\cos \left(\frac{a_{k} t}{\epsilon}\right) \approx 1$, meaning $\frac{a_{k} t}{\epsilon}$ are approximately integer multiples of π.

1) Multiplication \longrightarrow Additive: We first wish to replace the multiplication by addition. We have,

$$
|x| \leq \exp \left(-1 / 2\left(1-x^{2}\right)\right)
$$

and so,

$$
\begin{aligned}
P_{\epsilon}(a) & \left.\lesssim \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \prod_{k=1}^{n} \sin ^{2}\left(\frac{a_{k} t}{\epsilon}\right) \right\rvert\, d t \\
& =\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \mathrm{e}^{-\frac{1}{2} f\left(\frac{t}{\epsilon}\right)} d t
\end{aligned}
$$

where $f(t)=\sum_{k=1}^{n} \sin ^{2}\left(a_{k} t\right)$.
Note that we want $f(t)$ to be large.
Example 4 (Ex). Set $M:=\max _{|t| \leq \frac{\pi}{2}} f\left(\frac{t}{\epsilon}\right)$. Then $\frac{n}{4} \leq M \leq n$
Hint: Estimate the max by an average $\frac{1}{\pi} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \cdot d t$.
Think of $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \cdot d t$ as an expectation with respect to t. Use the integral distribution formula,

$$
\mathbb{E} x=\int_{0}^{\infty} \mathbb{P}(x \geq s) d s
$$

Then we have,

$$
P_{\epsilon}(a) \leq \int_{0}^{1}\left|\left\{t:|t| \leq \frac{\pi}{2}: \mathrm{e}^{-\frac{1}{2} f\left(\frac{t}{\epsilon}\right)} \geq s\right\}\right| d s
$$

Using the change of variables $s=\mathrm{e}^{-\frac{1}{2} m}$, we have

$$
P_{\epsilon}(a) \leq \int_{0}^{\infty}|\underbrace{\left\{t:|t| \leq \frac{\pi}{2}: f\left(\frac{t}{\epsilon}\right) \leq m\right\}}_{\text {Level Sets }}| \cdot \mathrm{e}^{-\frac{m}{2}} d m
$$

Definition 5 (Level Sets). Set

$$
T(m, r)=\left\{T\left(m, \frac{\pi}{2}\right) t:|t| \leq r, f\left(\frac{t}{\epsilon}\right) \leq m\right\}
$$

Using this, we have that

$$
P_{\epsilon}(a) \leq \int_{0}^{\infty}\left|T\left(m, \frac{\pi}{2}\right)\right| \cdot \mathrm{e}^{-\frac{m}{2}} d m,
$$

which is a problem for small m , since $\left|T\left(m, \frac{\pi}{2}\right)\right|$ decreases to zero as m decreases to zero. The regularity of decay of $\left|T\left(m, \frac{\pi}{2}\right)\right|$ is approximatly $\sqrt{\frac{m}{M}}$.

2 Sum-Sets

See [?] on the Additive Combinatorics:
Note that here we use the Minkowski set addition:

$$
A+B=\{a+b \mid a \in A, b \in B\}
$$

Theorem 6 (Mann-Kneser Inequality [?]). On the torus $\mathbb{T}=\mathbb{R} / \mathbb{Z}$, For $A, B \subset \mathbb{T}$ closed, either $A+B=\mathbb{T}$ or $|A+B| \geq|A|+|B|$.
Proof. Assume $A+B \neq \mathbb{T}$, and so take a boundary point $x \in A+B$. Then there exists an $x_{j} \rightarrow x$. We want to find disjoint translates of A and B in $A+B$. Then

$$
\left(x_{j}-A\right) \cap B=\emptyset
$$

Taking the limit,

$$
|(x-A) \cap B|=0 .
$$

Let $x=a+b$, with $a \in A, b \in B$. Then,

$$
\begin{aligned}
& |(a+b-A) \cap B|=0, \\
& |(b-A) \cap(B-a)|=0
\end{aligned}
$$

and so we have almost disjoint translates of $A, B \subseteq B-A$

Corollary 7. $T \subseteq \mathbb{T}$ closed, $T_{N}=\underbrace{T+\ldots+T}_{N \text { times }}$
Then either

$$
T_{N}=\mathbb{T}
$$

or

$$
\left|T_{N}\right| \geq N \cdot|T|
$$

Also, for $\mathbb{R}, T \subseteq \mathbb{R}$ closed,

$$
\mu_{r}(T)=|T \cap[-r, r]|
$$

Then either

$$
T \supseteq[-r, r]
$$

or

$$
\mu_{r}\left(T_{N}\right) \geq \frac{N}{2} \mu_{\frac{r}{2}}(T)
$$

We want to apply sum-set bounds for $T:=T\left(m, \frac{\pi}{2}\right)$. Is there a z such that $T_{N} \subseteq T\left(z, N \frac{\pi}{2}\right)$? We have

$$
\begin{gathered}
\sin (x+y) \leq|\sin x|+|\sin y| \\
\sin \left(\sum_{1}^{N} x_{j}\right) \leq \sum_{1}^{N}\left|\sin x_{j}\right| \\
\sin ^{2}\left(\sum_{1}^{N} x_{j}\right) \leq N \sum_{1}^{N} \sin ^{2} x_{j}
\end{gathered}
$$

so

$$
T_{N} \subseteq T\left(N^{2} m, N \cdot \frac{\pi}{2}\right)
$$

On the other hand, we can use sum-set bound (Ex) to bound T_{N}.
Corollary 8 (Regularity).

$$
\left|T\left(N^{2} m, \pi\right)\right| \geq \frac{N}{2}\left|T\left(m, \frac{\pi}{2}\right)\right|
$$

Note that rearranged, this corollary states that

$$
\left|T\left(m, \frac{\pi}{2}\right)\right| \leq \frac{2}{N}|T(\underbrace{N^{2} m}_{\eta M}, \pi)| .
$$

For every $\eta \in(0,1)$:

$$
\left|T\left(m, \frac{\pi}{2}\right)\right| \leq \sqrt{\frac{m}{\eta M}} \cdot|T(\eta m, \pi)| .
$$

Thus

$$
\begin{aligned}
P_{\epsilon}(a) & \lesssim \int_{0}^{\infty}\left|T\left(m, \frac{\pi}{2}\right)\right| \mathrm{e}^{-m / 2} d m \\
& \lesssim \int_{0}^{\eta M} \sqrt{\frac{m}{\eta M}} \cdot\left|T\left(\eta M, \frac{\pi}{2}\right)\right| \mathrm{e}^{-m / 2} d m+\int_{\eta M}^{\infty} \pi \mathrm{e}^{-m / 2} d m \\
& \leq \frac{1}{\sqrt{\eta M}}\left|T\left(\eta M, \frac{\pi}{2}\right)\right|+\mathrm{e}^{-\eta M / 2}
\end{aligned}
$$

And since $M \approx n$ from above, we have

$$
P_{\epsilon}(a) \lesssim \frac{1}{\sqrt{\eta n}}\left|T\left(\eta n, \frac{\pi}{2}\right)\right|+\mathrm{e}^{-c n / 2} .
$$

References

[1] A.M. Macbeath. On measure of sum sets II, The sum-theorem for the torus, volume 49. Cambridge, Cambridge, NY, 1953.
[2] Vu V. Tao, T. Additive Combinatorics. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, NY, 2006.

