Non-Asymptotic Theory of Random Matrices Lecture 2: Concentration of Measure

Lecturer: Roman Vershynin

Scribe: Deanna Needell

Tuesday, January 9, 2006

1 Concentration of the Volume

This lecture is based on results covered in [1, 2, 3]. Let $B_2^n = \{x \in \mathbb{R}^n : \|x\|_2 \leq 1\}$ denote the Euclidean ball in \mathbb{R}^n . For a constant c > 0, let cB_2^n be the scaled unit ball $\{cx : x \in \mathbb{R}^n, \|x\|_2 \leq 1\}$, and let $\mathsf{Vol}(A)$ denote the volume of A. Then we may ask questions about the relationships of different volumes. For instance, what is the relationship between $\mathsf{Vol}(B_2^n)$ and $\mathsf{Vol}(2B_2^n)$? Elementary geometry shows this relationship is precisely $\mathsf{Vol}(2B_2^n) = 2^n \mathsf{Vol}(B_2^n)$. Similarly, for $\epsilon > 0$, we have

$$\mathsf{Vol}((1+\epsilon)B_2^n) = (1+\epsilon)^n \mathsf{Vol}(B_2^n). \tag{1}$$

Using the fact that $(1 + \frac{1}{n})^n$ tends toward a constant (e) as $n \to \infty$, we have that the volume of $(1 + \epsilon)B_2^n$ and B_2^n are approximately equal if $\epsilon = O(\frac{1}{n})$. So this says that the sphereical shell of width $O(\frac{1}{n})$ contains most of the volume of the ball. Thus the volume of the ball is concentrated near the boundary, leading us to examine the concentration of the surface area.

2 Concentration of the Surface Area

Let $S^{n-1} = \{x \in \mathbb{R}^n : ||x||_2 = 1\}$ denote the Euclidean sphere in \mathbb{R}^n . Note that S^{n-1} is precisely the boundary of the Euclidean ball. Let σ denote the normalized rotationally invariant measure on S^{n-1} (so that $\sigma(S^{n-1}) = 1$). For $\epsilon > 0$ let $C(\epsilon)$ denote the spherical cap of height ϵ above the origin:

What is the area $\sigma(C(\epsilon))$? For a fixed $\epsilon > 0$, the area goes to 0 as $n \to \infty$. In fact, we have the following non-asymptotic result.

Lemma 1. For $0 < \epsilon < 1$ the cap $C(\epsilon)$ of S^{n-1} satisfies

$$\sigma(C(\epsilon)) \le e^{-n\epsilon^2/2}.$$
(2)

Proof: We first fix n and $\epsilon > 0$. We construct a cone that connects all points of $C(\epsilon)$ to the origin. In the figure below, this cone is shaded. Denote this cone by T. We then enclose the cone T in a ball with center ϵ above the origin. Using the Pythagoream Theorem, this ball can be chosen so that the radius is $\sqrt{1 - \epsilon^2}$.

We then have by elementary geometry that

$$\sigma(C(\epsilon)) = \frac{\operatorname{Area}(C(\epsilon))}{\operatorname{Area}(S^{n-1})} = \frac{\operatorname{Vol}(T)}{\operatorname{Vol}(B_2^n)} \le$$
(3)

$$\frac{\operatorname{Vol}(\sqrt{1-\epsilon^2}B_2^n)}{\operatorname{Vol}(B_2^n)} \le (\sqrt{1-\epsilon^2})^n \le \mathrm{e}^{-n\epsilon^2/2}.$$
(4)

Therefore, the area of the cap is small. But this means also that the area of two caps must be small. Thus the area is concentrated around the (any) equator. Let E_{ϵ} be the ϵ -neighborhood of the equator. Then by the Lemma,

$$\sigma(E_{\epsilon}) \ge 1 - 2\mathsf{e}^{-n\epsilon^2/2}.$$
(5)

Thus most of the area of the sphere is in the neighborhood around the equator of width $O(\frac{1}{\sqrt{n}})$.

3 Isoperimetric Inequalities

We begin this section with the classical isoperimetric inequality which dates back to antiquity.

Theorem 2 (Classical Isoperimetric Inequality). Among all sets in \mathbb{R}^n of a given volume, the Euclidean balls minimize the surface area.

We can strengthen this isomperimetric inequality by defining first the neighborhood of a set. For a set A and $\epsilon > 0$, set $A_{\epsilon} = \{x : d(x, A) \leq \epsilon\}$ where d denotes the Euclidean or geodesic metric. Then we have a stronger isoperimetric inequality:

Theorem 3 (Stronger Isoperimetric Inequality). For a fixed $\epsilon > 0$, among all sets A of \mathbb{R}^n of a given volume, the Euclidean balls minimize the volume of A_{ϵ} .

Note that by taking $\epsilon \to 0$ in the above theorem we recover the Classical Isomperimetric Inequality. This is due to the fact that

$$\operatorname{Area}(A) = \lim_{\epsilon \to 0} \frac{\operatorname{Vol}(A_{\epsilon}) - \operatorname{Vol}(A)}{\epsilon}$$
(6)

Finally, we state an even stronger isoperimetric inequality due to Levy.

Theorem 4 (Levy's Lemma). Among all subsets A of S^{n-1} of a given area, the spherical caps minimize the area of A_{ϵ} .

Note that in Levy's Lemma, the metric used to define A_{ϵ} may be taken to be the Euclidean or geodesic metric.

We now combine the above results. Let H denote the hemisphere of S^{n-1} . Let A be a subset of S^{n-1} with $\sigma(A) = \frac{1}{2}$. Then by the above theorems we have

$$\sigma(A_{\epsilon}) \ge \sigma(H_{\epsilon}) = 1 - \sigma(C(\epsilon)) \ge 1 - e^{-n\epsilon^2/2}.$$
(7)

Thus we have the following theorem.

Theorem 5 (Concentration of Measure). Let $A \subset S^{n-1}$ and $0 < \epsilon < 1$. If $\sigma(A) \geq \frac{1}{2}$ then $\sigma(A_{\epsilon}) \geq 1 - e^{-n\epsilon^2/2}$.

In words, this says that the area on the sphere is concentrated around every set of measure $\frac{1}{2}$. Also, it has been shown that $\frac{1}{2}$ can be replaced with any constant c > 0. See [2].

References

 K. Ball. An elementary introduction to modern convex geometry. Cambridge U. Press, New York, 1997.

- [2] M. Ledoux. Concentration of Measure Phenomenon. Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2001.
- [3] J. Matousek. *Lectures on Discrete Geometry*. Springer, Berlin-Heidelberg New York, 2002.