Non-Asymptotic Theory of Random Matrices
 Lecture 2: Concentration of Measure

Lecturer: Roman Vershynin

Scribe: Deanna Needell

Tuesday, January 9, 2006

1 Concentration of the Volume

This lecture is based on results covered in $[1,2,3]$. Let $B_{2}^{n}=\left\{x \in \mathbb{R}^{n}\right.$: $\left.\|x\|_{2} \leq 1\right\}$ denote the Euclidean ball in \mathbb{R}^{n}. For a constant $c>0$, let $c B_{2}^{n}$ be the scaled unit ball $\left\{c x: x \in \mathbb{R}^{n},\|x\|_{2} \leq 1\right\}$, and let $\operatorname{Vol}(A)$ denote the volume of A. Then we may ask questions about the relationships of different volumes. For instance, what is the relationship between $\operatorname{Vol}\left(B_{2}^{n}\right)$ and $\operatorname{Vol}\left(2 B_{2}^{n}\right)$? Elementary geometry shows this relationship is precisely $\operatorname{Vol}\left(2 B_{2}^{n}\right)=2^{n} \operatorname{Vol}\left(B_{2}^{n}\right)$. Similarly, for $\epsilon>0$, we have

$$
\begin{equation*}
\operatorname{Vol}\left((1+\epsilon) B_{2}^{n}\right)=(1+\epsilon)^{n} \operatorname{Vol}\left(B_{2}^{n}\right) \tag{1}
\end{equation*}
$$

Using the fact that $\left(1+\frac{1}{n}\right)^{n}$ tends toward a constant (e) as $n \rightarrow \infty$, we have that the volume of $(1+\epsilon) B_{2}^{n}$ and B_{2}^{n} are approximately equal if $\epsilon=O\left(\frac{1}{n}\right)$. So this says that the sphereical shell of width $O\left(\frac{1}{n}\right)$ contains most of the volume of the ball. Thus the volume of the ball is concentrated near the boundary, leading us to examine the concentration of the surface area.

2 Concentration of the Surface Area

Let $S^{n-1}=\left\{x \in \mathbb{R}^{n}:\|x\|_{2}=1\right\}$ denote the Euclidean sphere in \mathbb{R}^{n}. Note that S^{n-1} is precisely the boundary of the Euclidean ball. Let σ denote the normalized rotationally invariant measure on S^{n-1} (so that $\sigma\left(S^{n-1}\right)=1$). For $\epsilon>0$ let $C(\epsilon)$ denote the spherical cap of height ϵ above the origin:

What is the area $\sigma(C(\epsilon))$? For a fixed $\epsilon>0$, the area goes to 0 as $n \rightarrow \infty$. In fact, we have the following non-asymptotic result.

Lemma 1. For $0<\epsilon<1$ the cap $C(\epsilon)$ of S^{n-1} satisfies

$$
\begin{equation*}
\sigma(C(\epsilon)) \leq \mathrm{e}^{-n \epsilon^{2} / 2} \tag{2}
\end{equation*}
$$

Proof: We first fix n and $\epsilon>0$. We construct a cone that connects all points of $C(\epsilon)$ to the origin. In the figure below, this cone is shaded. Denote this cone by T. We then enclose the cone T in a ball with center ϵ above the origin. Using the Pythagoream Theorem, this ball can be chosen so that the radius is $\sqrt{1-\epsilon^{2}}$.

We then have by elementary geometry that

$$
\begin{align*}
\sigma(C(\epsilon)) & =\frac{\operatorname{Area}(C(\epsilon))}{\operatorname{Area}\left(S^{n-1}\right)}=\frac{\operatorname{Vol}(T)}{\operatorname{Vol}\left(B_{2}^{n}\right)} \leq \tag{3}\\
\frac{\operatorname{Vol}\left(\sqrt{1-\epsilon^{2}} B_{2}^{n}\right)}{\operatorname{Vol}\left(B_{2}^{n}\right)} & \leq\left(\sqrt{1-\epsilon^{2}}\right)^{n} \leq \mathrm{e}^{-n \epsilon^{2} / 2} \tag{4}
\end{align*}
$$

Therefore, the area of the cap is small. But this means also that the area of two caps must be small. Thus the area is concentrated around the (any) equator. Let E_{ϵ} be the ϵ-neighborhood of the equator. Then by the Lemma,

$$
\begin{equation*}
\sigma\left(E_{\epsilon}\right) \geq 1-2 \mathrm{e}^{-n \epsilon^{2} / 2} \tag{5}
\end{equation*}
$$

Thus most of the area of the sphere is in the neighborhood around the equator of width $O\left(\frac{1}{\sqrt{n}}\right)$.

3 Isoperimetric Inequalities

We begin this section with the classical isoperimetric inequality which dates back to antiquity.

Theorem 2 (Classical Isoperimetric Inequality). Among all sets in \mathbb{R}^{n} of a given volume, the Euclidean balls minimize the surface area.

We can strengthen this isomperimetric inequality by defining first the neighborhood of a set. For a set A and $\epsilon>0$, set $A_{\epsilon}=\{x: \mathrm{d}(x, A) \leq \epsilon\}$ where d denotes the Euclidean or geodesic metric. Then we have a stronger isoperimetric inequality:

Theorem 3 (Stronger Isoperimetric Inequality). For a fixed $\epsilon>0$, among all sets A of \mathbb{R}^{n} of a given volume, the Euclidean balls minimize the volume of A_{ϵ}.

Note that by taking $\epsilon \rightarrow 0$ in the above theorem we recover the Classical Isomperimetric Inequality. This is due to the fact that

$$
\begin{equation*}
\operatorname{Area}(A)=\lim _{\epsilon \rightarrow 0} \frac{\operatorname{Vol}\left(A_{\epsilon}\right)-\operatorname{Vol}(A)}{\epsilon} \tag{6}
\end{equation*}
$$

Finally, we state an even stronger isoperimetric inequality due to Levy.
Theorem 4 (Levy's Lemma). Among all subsets A of S^{n-1} of a given area, the spherical caps minimize the area of A_{ϵ}.

Note that in Levy's Lemma, the metric used to define A_{ϵ} may be taken to be the Euclidean or geodesic metric.

We now combine the above results. Let H denote the hemisphere of S^{n-1}. Let A be a subset of S^{n-1} with $\sigma(A)=\frac{1}{2}$. Then by the above theorems we have

$$
\begin{equation*}
\sigma\left(A_{\epsilon}\right) \geq \sigma\left(H_{\epsilon}\right)=1-\sigma(C(\epsilon)) \geq 1-\mathrm{e}^{-n \epsilon^{2} / 2} \tag{7}
\end{equation*}
$$

Thus we have the following theorem.
Theorem 5 (Concentration of Measure). Let $A \subset S^{n-1}$ and $0<\epsilon<1$. If $\sigma(A) \geq \frac{1}{2}$ then $\sigma\left(A_{\epsilon}\right) \geq 1-\mathrm{e}^{-n \epsilon^{2} / 2}$.

In words, this says that the area on the sphere is concentrated around every set of measure $\frac{1}{2}$. Also, it has been shown that $\frac{1}{2}$ can be replaced with any constant $c>0$. See [2].

References

[1] K. Ball. An elementary introduction to modern convex geometry. Cambridge U. Press, New York, 1997.
[2] M. Ledoux. Concentration of Measure Phenomenon. Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2001.
[3] J. Matousek. Lectures on Discrete Geometry. Springer, BerlinHeidelberg New York, 2002.

