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1 Concentration of the Volume

This lecture is based on results covered in [1, 2, 3]. Let Bn
2 = {x ∈ Rn :

‖x‖2 ≤ 1} denote the Euclidean ball in Rn. For a constant c > 0, let cBn
2

be the scaled unit ball {cx : x ∈ Rn, ‖x‖2 ≤ 1}, and let Vol(A) denote
the volume of A. Then we may ask questions about the relationships of
different volumes. For instance, what is the relationship between Vol(Bn

2 )
and Vol(2Bn

2 )? Elementary geometry shows this relationship is precisely
Vol(2Bn

2 ) = 2nVol(Bn
2 ). Similarly, for ε > 0, we have

Vol((1 + ε)Bn
2 ) = (1 + ε)nVol(Bn

2 ). (1)

Using the fact that (1+ 1
n)n tends toward a constant (e) as n →∞, we have

that the volume of (1 + ε)Bn
2 and Bn

2 are approximately equal if ε = O( 1
n).

So this says that the sphereical shell of width O( 1
n) contains most of the

volume of the ball. Thus the volume of the ball is concentrated near the
boundary, leading us to examine the concentration of the surface area.

2 Concentration of the Surface Area

Let Sn−1 = {x ∈ Rn : ‖x‖2 = 1} denote the Euclidean sphere in Rn. Note
that Sn−1 is precisely the boundary of the Euclidean ball. Let σ denote the
normalized rotationally invariant measure on Sn−1 (so that σ(Sn−1) = 1).
For ε > 0 let C(ε) denote the spherical cap of height ε above the origin:
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What is the area σ(C(ε))? For a fixed ε > 0, the area goes to 0 as n →∞.
In fact, we have the following non-asymptotic result.

Lemma 1. For 0 < ε < 1 the cap C(ε) of Sn−1 satisfies

σ(C(ε)) ≤ e−nε2/2. (2)

Proof: We first fix n and ε > 0. We construct a cone that connects all
points of C(ε) to the origin. In the figure below, this cone is shaded. Denote
this cone by T . We then enclose the cone T in a ball with center ε above
the origin. Using the Pythagoream Theorem, this ball can be chosen so that
the radius is

√
1− ε2.

We then have by elementary geometry that

σ(C(ε)) =
Area(C(ε))
Area(Sn−1)

=
Vol(T )
Vol(Bn

2 )
≤ (3)

Vol(
√

1− ε2Bn
2 )

Vol(Bn
2 )

≤ (
√

1− ε2)n ≤ e−nε2/2. (4)

Therefore, the area of the cap is small. But this means also that the area
of two caps must be small. Thus the area is concentrated around the (any)
equator. Let Eε be the ε-neighborhood of the equator. Then by the Lemma,

σ(Eε) ≥ 1− 2e−nε2/2. (5)

Thus most of the area of the sphere is in the neighborhood around the
equator of width O( 1√

n
).

3 Isoperimetric Inequalities

We begin this section with the classical isoperimetric inequality which dates
back to antiquity.
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Theorem 2 (Classical Isoperimetric Inequality). Among all sets in Rn of
a given volume, the Euclidean balls minimize the surface area.

We can strengthen this isomperimetric inequality by defining first the
neighborhood of a set. For a set A and ε > 0, set Aε = {x : d(x,A) ≤ ε}
where d denotes the Euclidean or geodesic metric. Then we have a stronger
isoperimetric inequality:

Theorem 3 (Stronger Isoperimetric Inequality). For a fixed ε > 0, among
all sets A of Rn of a given volume, the Euclidean balls minimize the volume
of Aε.

Note that by taking ε → 0 in the above theorem we recover the Classical
Isomperimetric Inequality. This is due to the fact that

Area(A) = lim
ε→0

Vol(Aε)− Vol(A)
ε

(6)

Finally, we state an even stronger isoperimetric inequality due to Levy.

Theorem 4 (Levy’s Lemma). Among all subsets A of Sn−1 of a given area,
the spherical caps minimize the area of Aε.

Note that in Levy’s Lemma, the metric used to define Aε may be taken
to be the Euclidean or geodesic metric.

We now combine the above results. Let H denote the hemisphere of Sn−1.
Let A be a subset of Sn−1 with σ(A) = 1

2 . Then by the above theorems we
have

σ(Aε) ≥ σ(Hε) = 1− σ(C(ε)) ≥ 1− e−nε2/2. (7)

Thus we have the following theorem.

Theorem 5 (Concentration of Measure). Let A ⊂ Sn−1 and 0 < ε < 1. If
σ(A) ≥ 1

2 then σ(Aε) ≥ 1− e−nε2/2.

In words, this says that the area on the sphere is concentrated around
every set of measure 1

2 . Also, it has been shown that 1
2 can be replaced with

any constant c > 0. See [2].
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