Non-Asymptotic Theory of Random Matrices Lecture 20: The recurrence set (Ergodic approach)

Lecturer: Roman Vershynin
Scribe: Igor Rumanov

Tuesday, March 13, 2007
Consider again the sum (see previous lectures)
$S=\sum_{1}^{n}=a_{k} \xi_{k} \quad k 1 \leq a_{k} \leq k 2$
Then Small Ball Probability:
$p_{\varepsilon}(a)=\sup _{v} \mathbb{P}(|S-v| \leq \varepsilon)$

GOAL : S. B. P. Theorem:

$$
p_{\varepsilon}(a) \leq \frac{1}{\sqrt{k}}\left(\varepsilon+\frac{1}{D(a)}\right)
$$

where $D(a)=D_{\alpha, k}(a)$ - the essential Least Common Denominator (LCD) of a
(if coefficients of $a=\left(\frac{p_{1}}{q_{1}}, \frac{p_{2}}{q_{2}}, \ldots, \frac{p_{n}}{q_{n}}\right)$
For $\inf t>0$: all except k coefficients of a are of distance α from nonzero integers

Example: $\left(1,1+\frac{1}{n}, \ldots, 1+\frac{n}{n}\right) \quad$ and $\quad(1,1, \ldots, 1)$
$\mathrm{LCD}=n \quad$ - fewer $\quad \mathrm{LCD}=1$ cancellations

Argument of Halasz : S.B.P. $\leq \|$ char. function $\|_{L^{1}}$
(by Esseen) :

$$
p_{\varepsilon}(a) \leq \int_{-\pi / 2}^{\pi / 2}|\phi(t / \varepsilon)| d t=\int_{-\pi / 2}^{\pi / 2}\left|\prod_{1}^{n} \cos \left(\frac{a_{k} t}{\varepsilon}\right)\right| d t
$$

(we want the integral to be small)
Consider

moving n particles
on 1 -torus (circle),
speeds a_{1}, \ldots, a_{n}
If speeds were random they would form really good incommesurate set. But they are not random.

1 Ergodic approach:

$$
p_{\varepsilon}(a)=\int_{-\pi / 2}^{\pi / 2} e^{-\frac{1}{2} f(t / \varepsilon)} d t
$$

where $f(t)=\sum_{1}^{n} \sin ^{2}\left(a_{k} t\right)$.
We want $f(t)$ to be big. We will apply
Sum-sets argument :
Last time we got for the small ball probability (S. B. P.):

$$
p_{\varepsilon}(a) \lesssim \frac{1}{\sqrt{\eta n}}|T(\eta n, \pi)|+e^{-c \eta n}, \quad \forall \eta>0
$$

Level set : $T(\eta n, \pi)=\{t \in[-\pi ; \pi]: f(t / \varepsilon) \leq \eta n\}$
Bad set
We want it to be small
Let $t \in T(\eta n, \pi)$. Then

$$
f(t)=\sum_{1}^{n} \sin ^{2}\left(a_{k} t\right) \leq \eta n
$$

\Rightarrow at most k terms in the above formula can be bigger than $\frac{\eta n}{k}=: \frac{\alpha^{2}}{4}$ or

$$
\eta:=\frac{\alpha^{2} k}{4 n}
$$

All except k terms satisfy:

$$
\left|\sin \left(\frac{a_{k} t}{\varepsilon}\right)\right| \leq \frac{\alpha}{2} \quad \Rightarrow \quad \operatorname{dist}\left(\frac{a_{k} t}{\varepsilon}, \pi \mathbb{Z}\right)<\alpha
$$

Definition 1. (Recurrence Set) : The recurrence set $I(a)=I_{\alpha, k}(a)$ of a vector $a \in \mathbb{R}^{n}$ is the set of all $t \in \mathbb{R}$ s.t. all except k of the coordinates of a are α-close to \mathbb{Z}.

So one has

$$
\begin{aligned}
& \frac{t}{\pi \varepsilon} \in I(a) \quad \Rightarrow \quad \mathrm{T}(\eta n, \pi) \subseteq \pi \varepsilon I(a) \\
& \begin{array}{cc}
\uparrow & \uparrow \\
\text { Bad set } & \text { Recurrence set }
\end{array}
\end{aligned}
$$

and

$$
|T(\eta n, \pi)| \leq|\pi \varepsilon I(a) \cap[-\pi, \pi)|=\pi \varepsilon\left|I(a) \cap\left[-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right]\right|
$$

Let us define density of the recurrence set in an interval symmetric w.r.t. the origin:

$$
\operatorname{dens}(I, y):=\frac{|I \cap[-y, y)|}{2 y}
$$

We thus proved :

$$
|T(\eta n, \pi)| \leq 2 \pi \cdot \operatorname{dens}\left(I(a), \frac{1}{\varepsilon}\right)
$$

It follows that

$$
\mathrm{p}_{\varepsilon}(a) \lesssim \frac{1}{\alpha \sqrt{k}} \cdot \operatorname{dens}\left(I(a), \frac{1}{\varepsilon}\right)+e^{-c \alpha^{2} k}
$$

The question arises about
Density of the recurrence set $\left(\lesssim \frac{1}{D(a)}\right)$?
Suppose: density is big.
Strategy: 1) Recurrence set has lots of gaps (\Rightarrow since $I \subset\left[-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right]$ there exist small gaps)
2) Each gap bounds L.C.D. above (\Rightarrow LCD small)
(then a may indeed be embedded into arithmetic progression)
\uparrow
Suppose $t_{0} a, t_{1} a$ (see picture above) are close to the integers $\mathbb{Z}^{n} \Rightarrow\left(t_{1}-t_{0}\right) a$ is close to $\mathbb{Z}^{n} \Rightarrow D(a) \leq t_{1}-t_{0}$

Lemma 2. (Gaps) : Let $t_{0} \in I(a)$. Then
(1) $t_{0}+3 \alpha \notin I(a)$
(2) Let $t_{1} \in I(a)$ be s.t. $t_{1}>t_{0}+3 \alpha$. Then $t_{1}-t_{0} \geq D(a)$

Proof: Exercise (1): If $t_{0} a$ is α-close to \mathbb{Z}^{n}, then $\left(t_{0}+3 \alpha\right) a$ is not α-close anymore.
(2) See above : subtract.

Lemma 3. (Recurrence set via LCD) :

$$
\operatorname{dens}\left(I(a), \frac{1}{\varepsilon}\right) \lesssim \alpha\left(\varepsilon+\frac{1}{D(a)}\right)
$$

Proof:

$$
\begin{gathered}
I=I(a) \cap\left[-\frac{1}{\varepsilon}, \frac{1}{\varepsilon}\right] \\
t_{0}:=\min \{t \in I\}
\end{gathered}
$$

If $I \subseteq\left[t_{0}, t_{0}+3 \alpha\right]$, then

$$
\operatorname{dens}(I(a), 1 \varepsilon) \leq \frac{3 \alpha}{2 / \varepsilon} \lesssim \alpha \varepsilon \quad Q E D
$$

If not, define $t_{1}, \ldots, t_{L} \in I$:

$$
t_{l}=\min t \in I: t_{l}>t_{l-1}+3 \alpha
$$

By Part 1 of Lemma,

$$
I \subset \cup_{0}^{L}\left[t_{l}, t_{l}+3 \alpha\right]
$$

By Part 2,

$$
t_{L}-t_{0}=\sum_{l=1}^{L}\left(t_{l}-t_{l-1}\right) \geq L \cdot D(a)
$$

(but $t_{L}-t_{0} \leq 2 / \varepsilon$).
Therefore, combining the above statements, one obtains

$$
\operatorname{dens}\left(I(a), \frac{1}{\varepsilon}\right) \leq \frac{\left|\cup_{0}^{L}\left[t_{l}, t_{l}+3 \alpha\right]\right|}{L \cdot D(a)}=\frac{(L+1) \cdot 3 \alpha}{L \cdot D(a)} \lesssim \frac{\alpha}{D(\alpha)}
$$

Then finally the theorem follows:

$$
p_{\varepsilon}(a) \leq \frac{1}{\sqrt{k}}\left(\varepsilon+\frac{1}{D(a)}\right)+e^{-c \alpha^{2} k} \quad \square \text { S.B.P.T. }
$$

Application to Strong Invertibility Theorem

Apply S.B.P.T. for $X^{*}=$ random normal (to span $\left.\left(x_{1}, \ldots, x_{n}\right)\right)$
(For example, consider vector $(1,1, \ldots, 1)$: then probability
$\mathbb{P}\left(\sum \pm 1=0\right) \sim \frac{1}{\sqrt{n}}$. Now taking into account the factor $D(a)$ one gets that the coefficients are incomparable).

LCD of X^{*} is exponentially big?
Ex. (Problem) : If $a=\left(a_{1}, \ldots, a_{n}\right)$ with i.i.d. gaussian a_{k} then $D(a) \geq e^{c n}$ with probability $1-e^{-c n}$.

But X^{*} has no independent components.
We come to

Orchard model for LCD :

$D(a)=$ how
far one can see
in an orchard

Theorem 4 ([1]). : With probability $1-e^{-c n}, D\left(X^{*}\right) \geq e^{c n}$
Implies Distance bound

$$
\operatorname{dist}\left(x_{n}, H_{n}\right) \geq\left|\left\langle X^{*}, x_{n}\right\rangle\right|=\left|\sum a_{k} \xi_{k}\right|
$$

$$
\mathrm{P}\left(\operatorname{dist}\left(\mathrm{x}_{n}, H_{n}\right)<\varepsilon\right) \leq \varepsilon+c^{n}
$$

(Before we proved this with $\frac{1}{\sqrt{n}}$ instead of c^{n}).
This implies Strong Invertibility Theorem :

$$
\mathrm{P}\left(s_{n}(A) \leq \frac{\varepsilon}{\sqrt{n}}\right) \leq C \varepsilon+c^{n}
$$

(the last formula is true for all subgaussian matrices)

Conjecture: In the last formula

$$
\begin{aligned}
& c=\frac{1}{2}+o(1) \text { (recall Bernoulli case). } \\
& \mathrm{C}=1
\end{aligned}
$$

References

[1] Mark Rudelson and Roman Vershynin. The LittlewoodOfford problem and invertibility of random matrices. http://www.math.ucdavis.edu/~vershynin/papers/rv-invertibility.pdf preprint - submitted, 2007.

