
Non-Asymptotic Theory of Random Matrices

Lecture 3: Concentration of Measure (cont’d)
Lecturer: Roman Vershynin Scribe: Brendan Farrell

Thursday, January 11, 2006

1 Introduction

In this lecture we establish a functional form of the concentration of measure.
Recall that a function f : X → Y is called 1-Lipschitz if for all x1 and x2 in
X, dY (f(x1), f(x2)) ≤ dX(x, y). We will see that every Lipschitz function on
Sn−1 is nearly constant on most of Sn−1. Our goal is to look at expectation
on Sn−1,

Ef =

∫
Sn−1

fdσ.

But first we will work with the median Mf , which is defined to be a number
satisfying

σ(f ≤ Mf) ≥ 1/2 and σ(f ≥ Mf) ≥ 1/2.

Exercise 1. Show that Mf always exists for all f .

(Note: Mf may not be unique, for example when f has a jump.) If
f is a 1-Lipschitz function, and x is point at most ε-distant from the set
(f ≤ Mf), then f(x) ≤ Mf +ε. Therefore, by the Concentration of Measure
Theorem, most x on Sn−1 satisfy f(x) ≤ Mf + ε. Also, a lower bound is
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given by σ(f ≤ Mf + ε) ≥ 1 − e−nε2/2. By applying this same argument to
f ≥ Mf , we also have σ(f(x) ≥ Mf − ε) ≥ 1 − e−nε2/2, and we conclude
that σ(|f − Mf | ≤ ε) ≥ 1 − 2e−nε2/2.

2 Concentration of Measure on Sn−1 in Functional

Form

Theorem 2. Let f : Sn−1 → R be a 1 − Lipschitz function. Then for all
ε ≥ 0,

σ(|f − Mf | ≤ ε) ≥ 1 − 2e−nε2/2. (1)

We interpret this theorem as follows: “A Lipschitz function is almost a
constant on most of the sphere.”

Exercise 3. Generalize the previous Theorem for L-Lipschitz function. Namely,
show that if f is L-Lipschitz, then σ(|f − Mf | ≤ ε) ≥ 1 − 2e−nε2/2L2

).

Note that in the earlier discussion of the concentration of measure on
Sn−1, we used very little geometry.

We will establish the concentration of measure for the Gauss space.
Gauss space is R

n, where the matric is the standard Euclidean metric,
‖x−y‖2, and the measure is the canonical Gaussian measure γ with density

1
(2π)n/2

e−‖x‖2

2
/2dx.

Theorem 4 (Isoperimetric Inequality, C. Borell 1975, [1]). For all ε > 0 and
all sets A satisfying γ(A) = 1/2, γ(Aε) is minimized when A is a half-space.

A half-space A in R
n is a full subspace R

n−1 and all x ≤ 0 in the nth

dimension, as in the figure.
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Exercise 5. Verify the following:

γ(Aε) =

∫ ε

−∞

1√
2π

e−x2/2dx

= 1 −
∫ ∞

ε

1√
2π

e−x2/2dx

≥ 1 − e−ε2/2

Exercise 6. Compare γ(Aε)− γ(A) to 1−
∫ ∞
ε

1√
2π

e−x2/2dx, where A is the

sphere of measure 1/2.

Theorem 7 (Concentration of Measure in Gauss Space (functional form)).
Let f : R

n → R be a 1-Lipschitz function. Then for all ε > 0,

γ(|f − Mf | ≤ ε) ≥ 1 − 2e−2ε2/2 (2)

We will use part of the following lemma to relate Ef and Mf .

Lemma 8 (Tails/Integrability/Moments). Let X be a random variable. The
following are equivalent:

1. P(X > t) < C1e
−c1t2

2. Eec2X2 ≤ C2

3. (EXp)1/p ≤ C3
√

p for 1 ≤ p < ∞

Where (C1, c1), (C2, c2) and C3 are positive constants depending only on
each other.

Proof:
(1 ⇒ 3) EX =

∫ ∞
0 P(X > t)dt, and EXp =

∫ ∞
0 P(Xp > t)dt. Make the

following change of variables: t = sp and dt = psp−1ds. Then, using this
change of variables and Property (1) above,

EXp =

∫ ∞

0
P(Xp > t)dt

≤ p

∫ ∞

0
C1e

−c1s2

sp−1ds (note: the integrand is the Γ function)

≤ p(c1p)p/2
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(3 ⇒ 2) Use the Taylor expansion: ex =
∑∞

p=0
xp

p! .

Eec2X2

=

∞∑
p=0

cp
2E[X2p]

p!

≤
∞∑

p=0

cp
2(C3

√
2p)2p

p!

≤ 2 by choosing c2 small.

(2 ⇒ 1) We will use Markov’s inequality: P(X > t) ≤ EX
t .

P(X > t) = P(ec2X2

> ec2t2)

≤ Eec2X2

ec2t2

≤ C2e
−c2t2

We will use the first property to replace Mf by Ef in the Concentration of
Measure.
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Lemma 9. Let f be a 1-Lipschitz function defined on Gauss space. Then
there exists a constant C such that |Ef − Mf | ≤ C.

Proof: Define the random variable X = |f −Mf |. By the concentration of
measure, X satisfies property (1) of Lemma 8. Therefore,

|Ef − Mf | = |E(f − Mf)|
≤ E|f − Mf | Jensen’s Inequality

≤ C3

Lemma 10. For the sphere, |Ef − Mf | ≤ c/
√

n.

Exercise 11. Prove the equivalent form ofLemma 9 for the sphere. Start
by defining the random variable X =

√
n|f − Mf |.

The general intuition for concentration of measure theorems is that they
will hold on spaces with sufficient symmetries, such as Sn, the symmetric
group. See [2].

References

[1] C. Borell. The Brunn-Minkowski inequality in Gauss space. Invent.
Math., 30(2):207–216, 1975.

[2] V. D. Milman and G. Schechtman. Asymptotic theory of finite-
dimensional normed spaces, volume 1200 of Lecture Notes in Mathe-
matics. Springer-Verlag, Berlin, 1986.

5


