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1 Introduction

In this lecture we establish a functional form of the concentration of measure.
Recall that a function f : X — Y is called 1-Lipschitz if for all z1 and x5 in
X, dy (f(z1), f(x2)) < dx(x,y). We will see that every Lipschitz function on
S™~1 is nearly constant on most of S~ !. Qur goal is to look at expectation
on "1
Ef = fdo.
Sn—l
But first we will work with the median M f, which is defined to be a number
satisfying
o(f <Mf) > 1/2 and o(f > Mf) > 1/2.

Exercise 1. Show that Mf always exists for all f.

(Note: Mf may not be unique, for example when f has a jump.) If
f is a 1-Lipschitz function, and x is point at most e-distant from the set
(f <Mf), then f(x) < Mf+e. Therefore, by the Concentration of Measure
Theorem, most = on S™~! satisfy f(z) < Mf + . Also, a lower bound is

>Mf

f<Mf



given by o(f < Mf +¢) > 1 — e "<"/2. By applying this same argument to
f > M, we also have o(f(z) > Mf —¢€) > 1 — e /2 and we conclude
that o(|f — Mf] <€) > 1— 2en<"/2,

2 Concentration of Measure on S" ! in Functional
Form

Theorem 2. Let f : S" ! — R be a 1 — Lipschitz function. Then for all
€e>0, ,
o(|f —Mf| <€) >1—2e"¢/2 (1)

We interpret this theorem as follows: “A Lipschitz function is almost a
constant on most of the sphere.”

Exercise 3. Generalize the previous Theorem for L-Lipschitz function. Namely,
show that if f is L-Lipschitz, then o(|f —Mf| <e€)>1— 26_”'62/2[’2).

Note that in the earlier discussion of the concentration of measure on
S™~1 we used very little geometry.

We will establish the concentration of measure for the Gauss space.
Gauss space is R™, where the matric is the standard Euclidean metric,

||z —yl|2, and the measure is the canonical Gaussian measure v with density
efllx”%/de

1
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Theorem 4 (Isoperimetric Inequality, C. Borell 1975, [1]). For alle > 0 and
all sets A satisfying v(A) = 1/2, v(A¢) is minimized when A is a half-space.

A half-space A in R™ is a full subspace R” ! and all z < 0 in the nt*
dimension, as in the figure.




Exercise 5. Verify the following:

v(A) = / ! e "2y
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Exercise 6. Compare y(Ac) —~(A) to1— [ \/%e—fCQ/Qda:, where A is the
sphere of measure 1/2.

Theorem 7 (Concentration of Measure in Gauss Space (functional form)).
Let f:R™ — R be a 1-Lipschitz function. Then for all € > 0,

YIf =M <€) 21 -2/ (2)
We will use part of the following lemma to relate Ef and Mf.

Lemma 8 (Tails/Integrability/Moments). Let X be a random variable. The
following are equivalent:

1. P(X > t) < Creat’
2. Re2X? < (9

3. (IEXp)l/p < C3y/p for1 <p<oo

Where (C1,c1), (Ca,c2) and Cs are positive constants depending only on
each other.

Proof:

(1 = 3) EX = [[°P(X > t)dt, and EX? = [[°P(X? > t)dt. Make the
following change of variables: t = sP and dt = psP~!ds. Then, using this
change of variables and Property (1) above,

o)
EX? = / P(XP > t)dt
o 2
< p/ Cre~% sP1ds  (note: the integrand is the I' function)
0

< plep)?/?
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< 2 by choosing ¢y small.

(2 = 1) We will use Markov’s inequality: P(X > ¢) < %.

P(X >t) = Pe2X >e2t)
E€C2X2
< C«Zefczt2

We will use the first property to replace M(f by Ef in the Concentration of
Measure.




Lemma 9. Let f be a 1-Lipschitz function defined on Gauss space. Then
there exists a constant C such that [Ef — Mf| < C.

Proof: Define the random variable X = |f — Mf|. By the concentration of
measure, X satisfies property (1) of Lemma 8. Therefore,

[Ef —Mf| = [E(f—Mf)|
< E|f — Mf| Jensen’s Inequality
< Cj

Lemma 10. For the sphere, |Ef —Mf| < ¢/\/n.

Exercise 11. Prove the equivalent form ofLemma 9 for the sphere. Start
by defining the random variable X = /n|f — Mf].

The general intuition for concentration of measure theorems is that they
will hold on spaces with sufficient symmetries, such as S,, the symmetric
group. See [2].
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