Non-Asymptotic Theory of Random Matrices

Lecture 3: Concentration of Measure (cont'd) Lecturer: Roman Vershynin Scribe: Brendan Farrell

Thursday, January 11, 2006

1 Introduction

In this lecture we establish a functional form of the concentration of measure. Recall that a function $f: X \to Y$ is called 1-Lipschitz if for all x_1 and x_2 in $X, d_Y(f(x_1), f(x_2)) \leq d_X(x, y)$. We will see that every Lipschitz function on S^{n-1} is nearly constant on most of S^{n-1} . Our goal is to look at expectation on S^{n-1} ,

$$\mathbb{E}f = \int_{S^{n-1}} f d\sigma.$$

But first we will work with the median $\mathbb{M}f$, which is defined to be a number satisfying

 $\sigma(f \leq \mathbb{M}f) \geq 1/2$ and $\sigma(f \geq \mathbb{M}f) \geq 1/2$.

Exercise 1. Show that Mf always exists for all f.

(Note: $\mathbb{M}f$ may not be unique, for example when f has a jump.) If f is a 1-Lipschitz function, and x is point at most ϵ -distant from the set $(f \leq \mathbb{M}f)$, then $f(x) \leq \mathbb{M}f + \epsilon$. Therefore, by the Concentration of Measure Theorem, most x on S^{n-1} satisfy $f(x) \leq \mathbb{M}f + \epsilon$. Also, a lower bound is

given by $\sigma(f \leq \mathbb{M}f + \epsilon) \geq 1 - e^{-n\epsilon^2/2}$. By applying this same argument to $f \geq \mathbb{M}f$, we also have $\sigma(f(x) \geq \mathbb{M}f - \epsilon) \geq 1 - e^{-n\epsilon^2/2}$, and we conclude that $\sigma(|f - \mathbb{M}f| \leq \epsilon) \geq 1 - 2e^{-n\epsilon^2/2}$.

2 Concentration of Measure on S^{n-1} in Functional Form

Theorem 2. Let $f: S^{n-1} \to \mathbb{R}$ be a 1-Lipschitz function. Then for all $\epsilon \geq 0$,

$$\sigma(|f - \mathbb{M}f| \le \epsilon) \ge 1 - 2e^{-n\epsilon^2/2}.$$
(1)

We interpret this theorem as follows: "A Lipschitz function is almost a constant on most of the sphere."

Exercise 3. Generalize the previous Theorem for L-Lipschitz function. Namely, show that if f is L-Lipschitz, then $\sigma(|f - \mathbb{M}f| \le \epsilon) \ge 1 - 2e^{-n\epsilon^2/2L^2})$.

Note that in the earlier discussion of the concentration of measure on S^{n-1} , we used very little geometry.

We will establish the concentration of measure for the Gauss space. Gauss space is \mathbb{R}^n , where the matric is the standard Euclidean metric, $||x - y||_2$, and the measure is the canonical Gaussian measure γ with density $\frac{1}{(2\pi)^{n/2}}e^{-||x||_2^2/2}dx$.

Theorem 4 (Isoperimetric Inequality, C. Borell 1975, [1]). For all $\epsilon > 0$ and all sets A satisfying $\gamma(A) = 1/2$, $\gamma(A_{\epsilon})$ is minimized when A is a half-space.

A half-space A in \mathbb{R}^n is a full subspace \mathbb{R}^{n-1} and all $x \leq 0$ in the n^{th} dimension, as in the figure.

Exercise 5. Verify the following:

$$\gamma(A_{\epsilon}) = \int_{-\infty}^{\epsilon} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$$
$$= 1 - \int_{\epsilon}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$$
$$\ge 1 - e^{-\epsilon^2/2}$$

Exercise 6. Compare $\gamma(A_{\epsilon}) - \gamma(A)$ to $1 - \int_{\epsilon}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-x^2/2} dx$, where A is the sphere of measure 1/2.

Theorem 7 (Concentration of Measure in Gauss Space (functional form)). Let $f : \mathbb{R}^n \to \mathbb{R}$ be a 1-Lipschitz function. Then for all $\epsilon > 0$,

$$\gamma(|f - \mathbb{M}f| \le \epsilon) \ge 1 - 2e^{-2\epsilon^2/2} \tag{2}$$

We will use part of the following lemma to relate $\mathbb{E}f$ and $\mathbb{M}f$.

Lemma 8 (Tails/Integrability/Moments). Let X be a random variable. The following are equivalent:

- 1. $\mathbb{P}(X > t) < C_1 e^{-c_1 t^2}$
- 2. $\mathbb{E}e^{c_2X^2} \leq C_2$
- 3. $(\mathbb{E}X^p)^{1/p} \leq C_3\sqrt{p}$ for $1 \leq p < \infty$

Where (C_1, c_1) , (C_2, c_2) and C_3 are positive constants depending only on each other.

Proof:

 $(1 \Rightarrow 3) \mathbb{E}X = \int_0^\infty \mathbb{P}(X > t)dt$, and $\mathbb{E}X^p = \int_0^\infty \mathbb{P}(X^p > t)dt$. Make the following change of variables: $t = s^p$ and $dt = ps^{p-1}ds$. Then, using this change of variables and Property (1) above,

$$\mathbb{E}X^{p} = \int_{0}^{\infty} \mathbb{P}(X^{p} > t)dt$$

$$\leq p \int_{0}^{\infty} C_{1} e^{-c_{1}s^{2}} s^{p-1} ds \quad \text{(note: the integrand is the } \Gamma \text{ function)}$$

$$\leq p (c_{1}p)^{p/2}$$

 $(3 \Rightarrow 2)$ Use the Taylor expansion: $e^x = \sum_{p=0}^{\infty} \frac{x^p}{p!}$.

$$\mathbb{E}e^{c_2X^2} = \sum_{p=0}^{\infty} \frac{c_2^p \mathbb{E}[X^{2p}]}{p!}$$

$$\leq \sum_{p=0}^{\infty} \frac{c_2^p (C_3 \sqrt{2p})^{2p}}{p!}$$

$$\leq 2 \text{ by choosing } c_2 \text{ small.}$$

 $(2 \Rightarrow 1)$ We will use Markov's inequality: $\mathbb{P}(X > t) \leq \frac{\mathbb{E}X}{t}$.

$$\mathbb{P}(X > t) = \mathbb{P}(e^{c_2 X^2} > e^{c_2 t^2})$$
$$\leq \frac{\mathbb{E}e^{c_2 X^2}}{e^{c_2 t^2}}$$
$$\leq C_2 e^{-c_2 t^2}$$

We will use the first property to replace $\mathbb{M}f$ by $\mathbb{E}f$ in the Concentration of Measure.

Lemma 9. Let f be a 1-Lipschitz function defined on Gauss space. Then there exists a constant C such that $|\mathbb{E}f - \mathbb{M}f| \leq C$.

Proof: Define the random variable X = |f - Mf|. By the concentration of measure, X satisfies property (1) of Lemma 8. Therefore,

$$\begin{aligned} |\mathbb{E}f - \mathbb{M}f| &= |\mathbb{E}(f - \mathbb{M}f)| \\ &\leq \mathbb{E}|f - \mathbb{M}f| \text{ Jensen's Inequality} \\ &\leq C_3 \end{aligned}$$

Lemma 10. For the sphere, $|\mathbb{E}f - \mathbb{M}f| \leq c/\sqrt{n}$.

Exercise 11. Prove the equivalent form of Lemma 9 for the sphere. Start by defining the random variable $X = \sqrt{n}|f - Mf|$.

The general intuition for concentration of measure theorems is that they will hold on spaces with sufficient symmetries, such as S_n , the symmetric group. See [2].

References

- C. Borell. The Brunn-Minkowski inequality in Gauss space. Invent. Math., 30(2):207–216, 1975.
- [2] V. D. Milman and G. Schechtman. Asymptotic theory of finitedimensional normed spaces, volume 1200 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1986.