Non-Asymptotic Theory of Random Matrices
 Lecture 4: Dimension Reduction

Date: January 16, 2007

Lecturer: Roman Vershynin
Scribe: Matthew Herman

1 Introduction

Consider the set $X=\left\{n\right.$ points in $\left.\mathbb{R}^{N}\right\}$ where both n and N are large. Our goal will be to reduce N so as to represent X in a space of dimension $k \ll N$. One motivation for this comes from computer science where X is a data structure.

Observation 1.

1. We can always take $N=n$, since $\operatorname{dim}(\operatorname{span}(X))=n$ and $X \subset$ $\operatorname{span}(X)$.
2. For $N<n$ we may lose linear independence.

Goal: We want to construct a map $T: \mathbb{R}^{N} \rightarrow \mathbb{R}^{k}, k \ll N$ such that pairwise distances in X are approximately preserved. That is, for all $x, y \in X$ there exists $\varepsilon>0$ such that

$$
(1-\varepsilon)\|x-y\|_{2} \leq\|T x-T y\|_{2} \leq(1+\varepsilon)\|x-y\|_{2} .
$$

Such a map is called an ε-embedding of our data structure X into \mathbb{R}^{k} (more precisely into ℓ_{2}^{k}). For us, T will be the linear map associated with a random matrix.

Theorem 2 (Johnson-Lindenstrauss (J-L) Flattening Lemma [3]). Let X be an n-point set in a Hilbert space, and suppose $\varepsilon \in(0,1)$. Then there exists an ε-embedding of X into ℓ_{2}^{k}, for some $k \leq C \varepsilon^{-2} \log n$ and some constant $C>0$.

Example 3. To represent n points in \mathbb{R}^{n} in a computer we need to store n^{2} numbers. However, by the J-L Flattening Lemma we can store only $O(n \log n)$ numbers and still reconstruct all distances within ε-error.

All known embeddings satisfying Theorem 2 are given by random matrices T such as

- Gaussian
- Bernoulli (Achlioptas [1])
- Orthogonal projections (J-L)

1.1 Random Projections in \mathbb{R}^{n}

- Random rotations (= random orthogonal matrices)
- Orthogonal group $O_{n}=\left\{\right.$ rotations in $\left.\mathbb{R}^{n}\right\}=\{$ orthogonal $n \times n$ matrices $\}$

Here, O_{n} is a probability space with probability measure called "Haar Measure" (from topological group theory).

1.2 Haar Measure

Suppose that M is a compact metric space (such as a sphere in \mathbb{R}^{n}), and that G is a group of isometries of M.

Theorem 4 (Haar Measure).

1. There exists a Borel probability measure μ on M which is invariant under G. That is, $\mu(S)=\mu(g S)$ for all $g \in G$ and $S \subset M$.
2. If G is transitive, then the Haar measure is unique. Here, "transitive" means for all $x, y \in X$, there exists $g \in G$ such that $g x=y$.

Proof: See §1 of Milman-Schechtmann [7] for a simple 2-page proof.
Example 5. Let $M=S^{n-1}, G=O_{n}$. Then $\mu=$ usual Lebesgue measure.
Example 6. Let $M=G=O_{n}$. Here the metric on a rotation comes from the Hilbert-Schmidt norm. In this sense $n \times n$ matrices can be viewed as "vectors" in $\mathbb{R}^{n^{2}}$, and the Hilbert-Schmidt norm provides a Euclidean distance between these matrices. This gives us a Haar measure on O_{n}.

1.3 Random rotations, random orthogonal matrices

Fact 7 (How to compute Haar Measure). For a given $z \in S^{n-1}$ and for a given random rotation (with respect to Haar measure) $U \in O_{n}, U z$ is a random vector which is uniformly distributed on S^{n-1}.

Proof. We want to show for all $A \subset S^{n-1}$ that we have $\mathbb{P}(U z \in A)=\sigma(A)$, where \mathbb{P} denotes probability (with respect to Haar measure) and σ is the usual uniform measure. Note that both sides of this equation define a probability measure on S^{n-1} which are rotationally invariant. The uniqueness part of the Haar Measure theorem implies that they coincide.

Definition 8.

- Random k-subspace of $\mathbb{R}^{n}=$ random rotation of $\mathbb{R}^{k} \subset \mathbb{R}^{n}$, denoted by $U^{*}\left(\mathbb{R}^{k}\right)$
- Random Projection $=$ orthogonal projection onto a random k-subspace, denoted by $U^{*} P_{k} U$, where $P_{k}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ is a projection (i.e., $P_{k} U=$ the first k rows of matrix U)

Proof of J-L Lemma (for ε-embedding given by random projections)
Layout of proof: First we will show that J-L holds for one particular fixed pair $x, y \in X$. Then we will show that it holds collectively for all possible pairs in X.

Step 1. Fix an arbitrary pair $x, y \in X$, and let $z=x-y$.

Lemma 9 ("Norm" of a random projection). Let $z \in \mathbb{R}^{n}$ be fixed, and let P be a random projection in \mathbb{R}^{n} onto a k-subspace. Then

1. $\left(\mathbb{E}\|P z\|_{2}^{2}\right)^{1 / 2}=\sqrt{k / n}$, where \mathbb{E} denotes expectation
2. For $\varepsilon>0$ we have that

$$
(1-\varepsilon) \sqrt{k / n} \leq\|P z\|_{2} \leq(1+\varepsilon) \sqrt{k / n}
$$

holds with probability $1-2 e^{-k \varepsilon^{2} / 2}$
Proof. 1. Note that the statement "Projecting a fixed z onto a random subspace" is equivalent to the statement "Projecting a random z onto a fixed subspace." Then with random rotation U we have

$$
\|P z\|_{2}=\left\|U^{*} P_{k} U z\right\|_{2}=\left\|P_{k} U z\right\|_{2}=\left\|P_{k} x\right\|_{2}
$$

where x is a random vector distributed uniformly on S^{n-1}. Then

$$
\mathbb{E}\left\|P_{k} x\right\|_{2}^{2}=\mathbb{E} \sum_{j=1}^{k} x_{j}^{2}=\sum_{j=1}^{k} \mathbb{E} x_{j}^{2}=k \mathbb{E} x_{1}^{2}=k / n
$$

2. For the next part of Lemma 9 we want to show

$$
\begin{aligned}
\text { Failure Probability } & \leq \mathbb{P}\left(\left|\|P z\|_{2}-\sqrt{k / n}\right|>\varepsilon \sqrt{k / n}\right) \\
& =\sigma\left(\left\{x \in S^{n-1}:\left|\left\|P_{k} x\right\|_{2}-\sqrt{k / n}\right|>\varepsilon \sqrt{k / n}\right\}\right.
\end{aligned}
$$

Let $f(x)=\left\|P_{k} x\right\|_{2}$, and recognize that $f: S^{n-1} \rightarrow \mathbb{R}^{n}$ is a 1-Lipschitz function. From Part 1 of this lemma we have that

$$
\left(\mathbb{E} f^{2}\right)^{1 / 2}=\sqrt{k / n}
$$

Let $p=\sigma\left(\left\{x \in S^{n-1}:\left|f(x)-\left(\mathbb{E} f^{2}\right)^{1 / 2}\right|>\varepsilon \sqrt{k / n}\right\}\right)$. Then

$$
p \leq 2 e^{-n(\varepsilon \sqrt{k / n})^{2} / 2}=2 e^{-k \varepsilon^{2} / 2}
$$

where we used the results of Concentration of Measure discussed in $\S 2$ of Lecture 3.

We next normalize our embedding as $T:=\sqrt{n / k} P$. By Lemma 9 , we have for any fixed $z \in X$ that

$$
\begin{equation*}
(1-\varepsilon)\|z\|_{2} \leq\|T z\|_{2} \leq(1+\varepsilon)\|z\|_{2} \tag{1}
\end{equation*}
$$

holds with high probability. Thus for any fixed $x, y \in X$ and putting $z=$ $x-y$ we have that the inequality (1) holds with probability $1-2 e^{-k \varepsilon^{2} / 2}$.

Now we consider the collective ensemble. Notice that there are no more than n^{2} pairs of $x, y \in X$. Then taking the union over all pairs we have the probability that (1) fails for some pair is less than or equal to

$$
n^{2} 2 e^{-k \varepsilon^{2} / 2}
$$

which is less than 1 if $k \geq C \varepsilon^{-2} \log n$. Hence with positive probability (1) holds with for all pairs. (End of proof for the J-L Flattening Lemma.)

Example 10 (Argument that $k \geq C(\varepsilon) \log n$ using volume point of view). Suppose for all $x, y \in X$ that

$$
1 / 2 \leq\|x-y\|_{2} \leq 1
$$

Now suppose that $\varepsilon=1 / 10$. Then by the J-L Flattening Lemma we can claim that

$$
1 / 4 \leq(1-\varepsilon) / 2 \leq\|T x-T y\|_{2} \leq(1+\varepsilon) \leq 2 .
$$

This tell us the following:

- The image of X under T is contained in a ball of radius 2 (i.e., $\left.T(X) \subset 2 B_{2}^{k}\right)$
- There are n disjoint $\frac{1}{8}$-balls centered at points in $T(X) \subset\left(2+\frac{1}{8}\right) B_{2}^{k} \subset$ $3 B_{2}^{k}$ if

$$
\begin{aligned}
n \cdot \operatorname{Vol}\left(\frac{1}{8} B_{2}^{k}\right) & \leq \operatorname{Vol}\left(3 B_{2}^{k}\right) \\
n \cdot\left(\frac{1}{8}\right)^{k} \operatorname{Vol}\left(B_{2}^{k}\right) & \leq 3^{k} \operatorname{Vol}\left(B_{2}^{k}\right) \\
n & \leq 24^{k} \\
\log n & \lesssim k .
\end{aligned}
$$

The last example showed that the $\log n$ factor in the J-L Flattening Lemma is sharp. The sharpness of the ε^{-2} factor is due to Alon and can be found in [6].

2 Related Work

Is there a version for

- ℓ_{1} ? No: Lee and Naor [4], Brinkman and Charikar [2].
- ℓ_{∞} ? No.
- $\ell_{p}($ for $p \neq 1,2, \infty)$? Still open.

3 Related Readings

- Matousek [6] and [5]
- Vempala [8]

References

[1] D. Achlioptas. Database-friendly random projections. Proc. 20th Annual Symposium on Principles of Database Systems, 26:274-281, 2001.
[2] B. Brinkman and M. Charikar. On the impossibility of dimension reduction in l_{1}. Journal of ACM, 52(5):766-788, 2005.
[3] W. B. Johnson and J. Lindenstrauss. Extensions of lipschitz mappings into a hilbert space. Contemp. Math., 26:189-206, 1984.
[4] J. R. Lee and A. Naor. Embedding the diamond graph in l_{p} and dimension reduction in l_{1}. Geometric and Functional Analysis, 14(4):745-747, 2004.
[5] J. Matousek. Website on open problems on embeddings of metric spaces. http://kam.mff.cuni.cz/~ matousek/.
[6] J. Matousek. Lectures on Discrete Geometry. Springer, BerlinHeidelberg New York, 2002.
[7] Vitali D. Milman and Gideon Schechtman. Asymptotic theory of finitedimensional normed spaces, volume 1200 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1986.
[8] Santosh S. Vempala. The random projection method, volume 65 of DIMACS Series in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society, Providence, 2004.

