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1 Introduction

Consider the set X = {n points in RN} where both n and N are large.
Our goal will be to reduce N so as to represent X in a space of dimension
k � N . One motivation for this comes from computer science where X is a
data structure.

Observation 1.

1. We can always take N = n, since dim(span(X)) = n and X ⊂
span(X).

2. For N < n we may lose linear independence.

Goal: We want to construct a map T : RN → Rk, k << N such that
pairwise distances in X are approximately preserved. That is, for all x, y ∈ X
there exists ε > 0 such that

(1− ε)‖x− y‖2 ≤ ‖Tx− Ty‖2 ≤ (1 + ε)‖x− y‖2.

Such a map is called an ε-embedding of our data structure X into Rk

(more precisely into `k
2). For us, T will be the linear map associated with a

random matrix.

Theorem 2 (Johnson-Lindenstrauss (J-L) Flattening Lemma [3]). Let X
be an n-point set in a Hilbert space, and suppose ε ∈ (0, 1). Then there exists
an ε-embedding of X into `k

2, for some k ≤ Cε−2 log n and some constant
C > 0.

Example 3. To represent n points in Rn in a computer we need to store
n2 numbers. However, by the J-L Flattening Lemma we can store only
O(n log n) numbers and still reconstruct all distances within ε-error.

1



All known embeddings satisfying Theorem 2 are given by random ma-
trices T such as

• Gaussian

• Bernoulli (Achlioptas [1])

• Orthogonal projections (J-L)

1.1 Random Projections in Rn

• Random rotations (= random orthogonal matrices)

• Orthogonal group On = {rotations in Rn} = {orthogonal n×n matrices}

Here, On is a probability space with probability measure called “Haar Mea-
sure” (from topological group theory).

1.2 Haar Measure

Suppose that M is a compact metric space (such as a sphere in Rn), and
that G is a group of isometries of M .

Theorem 4 (Haar Measure).

1. There exists a Borel probability measure µ on M which is invariant
under G. That is, µ(S) = µ(gS) for all g ∈ G and S ⊂ M .

2. If G is transitive, then the Haar measure is unique. Here, “transitive”
means for all x, y ∈ X, there exists g ∈ G such that gx = y.

Proof: See §1 of Milman-Schechtmann [7] for a simple 2-page proof.

Example 5. Let M = Sn−1, G = On. Then µ = usual Lebesgue measure.

Example 6. Let M = G = On. Here the metric on a rotation comes
from the Hilbert-Schmidt norm. In this sense n× n matrices can be viewed
as “vectors” in Rn2

, and the Hilbert-Schmidt norm provides a Euclidean
distance between these matrices. This gives us a Haar measure on On.
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1.3 Random rotations, random orthogonal matrices

Fact 7 (How to compute Haar Measure). For a given z ∈ Sn−1 and for
a given random rotation (with respect to Haar measure) U ∈ On, Uz is a
random vector which is uniformly distributed on Sn−1.

Proof. We want to show for all A ⊂ Sn−1 that we have P(Uz ∈ A) = σ(A),
where P denotes probability (with respect to Haar measure) and σ is the
usual uniform measure. Note that both sides of this equation define a prob-
ability measure on Sn−1 which are rotationally invariant. The uniqueness
part of the Haar Measure theorem implies that they coincide.

Definition 8.

• Random k-subspace of Rn = random rotation of Rk ⊂ Rn, denoted by
U∗(Rk)

• Random Projection = orthogonal projection onto a random k-subspace,
denoted by U∗PkU , where Pk : Rn → Rk is a projection (i.e., PkU =
the first k rows of matrix U)

Proof of J-L Lemma (for ε-embedding given by random projections)
Layout of proof : First we will show that J-L holds for one particular fixed
pair x, y ∈ X. Then we will show that it holds collectively for all possible
pairs in X.

Step 1. Fix an arbitrary pair x, y ∈ X, and let z = x− y.

Lemma 9 (“Norm” of a random projection). Let z ∈ Rn be fixed, and let
P be a random projection in Rn onto a k-subspace. Then

1. (E‖Pz‖2
2)

1/2 =
√

k/n, where E denotes expectation

2. For ε > 0 we have that

(1− ε)
√

k/n ≤ ‖Pz‖2 ≤ (1 + ε)
√

k/n

holds with probability 1− 2e−kε2/2

Proof. 1. Note that the statement “Projecting a fixed z onto a random
subspace” is equivalent to the statement “Projecting a random z onto a
fixed subspace.” Then with random rotation U we have

‖Pz‖2 = ‖U∗PkUz‖2 = ‖PkUz‖2 = ‖Pkx‖2
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where x is a random vector distributed uniformly on Sn−1. Then

E ‖Pkx‖2
2 = E

k∑
j=1

x2
j =

k∑
j=1

E x2
j = k E x2

1 = k/n.

2. For the next part of Lemma 9 we want to show

Failure Probability ≤ P
(∣∣∣‖Pz‖2 −

√
k/n

∣∣∣ > ε
√

k/n
)

= σ
(
{x ∈ Sn−1 :

∣∣∣‖Pkx‖2 −
√

k/n
∣∣∣ > ε

√
k/n}

)
.

Let f(x) = ‖Pkx‖2, and recognize that f : Sn−1 → Rn is a 1-Lipschitz
function. From Part 1 of this lemma we have that(

Ef2
)1/2

=
√

k/n.

Let p = σ({x ∈ Sn−1 : |f(x)− (Ef2)1/2| > ε
√

k/n}). Then

p ≤ 2e−n(ε
√

k/n )2/2 = 2e−kε2/2

where we used the results of Concentration of Measure discussed in §2 of
Lecture 3.

We next normalize our embedding as T :=
√

n/k P . By Lemma 9, we
have for any fixed z ∈ X that

(1− ε)‖z‖2 ≤ ‖Tz‖2 ≤ (1 + ε)‖z‖2 (1)

holds with high probability. Thus for any fixed x, y ∈ X and putting z =
x− y we have that the inequality (1) holds with probability 1− 2e−kε2/2.

Now we consider the collective ensemble. Notice that there are no more
than n2 pairs of x, y ∈ X. Then taking the union over all pairs we have the
probability that (1) fails for some pair is less than or equal to

n22e−kε2/2

which is less than 1 if k ≥ Cε−2 log n. Hence with positive probability (1)
holds with for all pairs. (End of proof for the J-L Flattening Lemma.) �
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Example 10 (Argument that k ≥ C(ε) log n using volume point of view).
Suppose for all x, y ∈ X that

1/2 ≤ ‖x− y‖2 ≤ 1.

Now suppose that ε = 1/10. Then by the J-L Flattening Lemma we can
claim that

1/4 ≤ (1− ε)/2 ≤ ‖Tx− Ty‖2 ≤ (1 + ε) ≤ 2.

This tell us the following:

• The image of X under T is contained in a ball of radius 2 (i.e.,
T (X) ⊂ 2Bk

2 )

• There are n disjoint 1
8 -balls centered at points in T (X) ⊂ (2+ 1

8)Bk
2 ⊂

3Bk
2 if

n · Vol(1
8Bk

2 ) ≤ Vol(3Bk
2 )

n · (1
8)k Vol(Bk

2 ) ≤ 3k Vol(Bk
2 )

n ≤ 24k

log n . k.

The last example showed that the log n factor in the J-L Flattening
Lemma is sharp. The sharpness of the ε−2 factor is due to Alon and can be
found in [6].
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2 Related Work

Is there a version for

• `1? No: Lee and Naor [4], Brinkman and Charikar [2].

• `∞? No.

• `p (for p 6= 1, 2,∞)? Still open.

3 Related Readings

• Matousek [6] and [5]

• Vempala [8]
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