Non-Asymptotic Theory of Random Matrices Lecture 4: Dimension Reduction

Date: January 16, 2007

Lecturer: Roman Vershynin

Scribe: Matthew Herman

1 Introduction

Consider the set $X = \{n \text{ points in } \mathbb{R}^N\}$ where both n and N are large. Our goal will be to reduce N so as to represent X in a space of dimension $k \ll N$. One motivation for this comes from computer science where X is a data structure.

Observation 1.

- 1. We can always take N = n, since dim(span(X)) = n and $X \subset span(X)$.
- 2. For N < n we may lose linear independence.

Goal: We want to construct a map $T : \mathbb{R}^N \to \mathbb{R}^k$, $k \ll N$ such that pairwise distances in X are *approximately* preserved. That is, for all $x, y \in X$ there exists $\varepsilon > 0$ such that

$$(1-\varepsilon) \|x-y\|_2 \leq \|Tx-Ty\|_2 \leq (1+\varepsilon) \|x-y\|_2.$$

Such a map is called an ε -embedding of our data structure X into \mathbb{R}^k (more precisely into ℓ_2^k). For us, T will be the linear map associated with a random matrix.

Theorem 2 (Johnson-Lindenstrauss (J-L) Flattening Lemma [3]). Let X be an n-point set in a Hilbert space, and suppose $\varepsilon \in (0, 1)$. Then there exists an ε -embedding of X into ℓ_2^k , for some $k \leq C\varepsilon^{-2}\log n$ and some constant C > 0.

Example 3. To represent n points in \mathbb{R}^n in a computer we need to store n^2 numbers. However, by the J-L Flattening Lemma we can store only $O(n \log n)$ numbers and still reconstruct all distances within ε -error.

All known embeddings satisfying Theorem 2 are given by random matrices T such as

- Gaussian
- Bernoulli (Achlioptas [1])
- Orthogonal projections (J-L)

1.1 Random Projections in \mathbb{R}^n

- Random rotations (= random orthogonal matrices)
- Orthogonal group $O_n = \{ \text{rotations in } \mathbb{R}^n \} = \{ \text{orthogonal } n \times n \text{ matrices} \}$

Here, O_n is a probability space with probability measure called "Haar Measure" (from topological group theory).

1.2 Haar Measure

Suppose that M is a compact metric space (such as a sphere in \mathbb{R}^n), and that G is a group of isometries of M.

Theorem 4 (Haar Measure).

- 1. There exists a Borel probability measure μ on M which is invariant under G. That is, $\mu(S) = \mu(gS)$ for all $g \in G$ and $S \subset M$.
- 2. If G is transitive, then the Haar measure is unique. Here, "transitive" means for all $x, y \in X$, there exists $g \in G$ such that gx = y.

Proof: See §1 of Milman-Schechtmann [7] for a simple 2-page proof.

Example 5. Let $M = S^{n-1}, G = O_n$. Then $\mu =$ usual Lebesgue measure.

Example 6. Let $M = G = O_n$. Here the metric on a rotation comes from the Hilbert-Schmidt norm. In this sense $n \times n$ matrices can be viewed as "vectors" in \mathbb{R}^{n^2} , and the Hilbert-Schmidt norm provides a Euclidean distance between these matrices. This gives us a Haar measure on O_n .

1.3 Random rotations, random orthogonal matrices

Fact 7 (How to compute Haar Measure). For a given $z \in S^{n-1}$ and for a given random rotation (with respect to Haar measure) $U \in O_n$, Uz is a random vector which is uniformly distributed on S^{n-1} .

Proof. We want to show for all $A \subset S^{n-1}$ that we have $\mathbb{P}(Uz \in A) = \sigma(A)$, where \mathbb{P} denotes probability (with respect to Haar measure) and σ is the usual uniform measure. Note that both sides of this equation define a probability measure on S^{n-1} which are rotationally invariant. The uniqueness part of the Haar Measure theorem implies that they coincide. \Box

Definition 8.

- Random k-subspace of \mathbb{R}^n = random rotation of $\mathbb{R}^k \subset \mathbb{R}^n$, denoted by $U^*(\mathbb{R}^k)$
- Random Projection = orthogonal projection onto a random k-subspace, denoted by U^*P_kU , where $P_k : \mathbb{R}^n \to \mathbb{R}^k$ is a projection (i.e., $P_kU =$ the first k rows of matrix U)

Proof of J-L Lemma (for ε -embedding given by random projections) Layout of proof: First we will show that J-L holds for one particular fixed pair $x, y \in X$. Then we will show that it holds collectively for all possible pairs in X.

Step 1. Fix an arbitrary pair $x, y \in X$, and let z = x - y.

Lemma 9 ("Norm" of a random projection). Let $z \in \mathbb{R}^n$ be fixed, and let P be a random projection in \mathbb{R}^n onto a k-subspace. Then

- 1. $(\mathbb{E}||Pz||_2^2)^{1/2} = \sqrt{k/n}$, where \mathbb{E} denotes expectation
- 2. For $\varepsilon > 0$ we have that

$$(1-\varepsilon)\sqrt{k/n} \leq ||Pz||_2 \leq (1+\varepsilon)\sqrt{k/n}$$

holds with probability $1 - 2e^{-k\varepsilon^2/2}$

Proof. 1. Note that the statement "Projecting a fixed z onto a random subspace" is equivalent to the statement "Projecting a random z onto a fixed subspace." Then with random rotation U we have

$$||Pz||_2 = ||U^*P_kUz||_2 = ||P_kUz||_2 = ||P_kx||_2$$

where x is a random vector distributed uniformly on S^{n-1} . Then

$$\mathbb{E} \|P_k x\|_2^2 = \mathbb{E} \sum_{j=1}^k x_j^2 = \sum_{j=1}^k \mathbb{E} x_j^2 = k \mathbb{E} x_1^2 = k/n.$$

2. For the next part of Lemma 9 we want to show

Failure Probability
$$\leq \mathbb{P}\left(\left|\|Pz\|_{2} - \sqrt{k/n}\right| > \varepsilon\sqrt{k/n}\right)$$

= $\sigma\left(\left\{x \in S^{n-1} : \left|\|P_{k}x\|_{2} - \sqrt{k/n}\right| > \varepsilon\sqrt{k/n}\right\}\right).$

Let $f(x) = ||P_k x||_2$, and recognize that $f: S^{n-1} \to \mathbb{R}^n$ is a 1-Lipschitz function. From Part 1 of this lemma we have that

$$\left(\mathbb{E}f^2\right)^{1/2} = \sqrt{k/n}.$$

Let $p = \sigma(\{x \in S^{n-1} : |f(x) - (\mathbb{E}f^2)^{1/2}| > \varepsilon\sqrt{k/n}\})$. Then $p \leq 2e^{-n(\varepsilon\sqrt{k/n})^{2/2}} = 2e^{-k\varepsilon^{2/2}}$

where we used the results of Concentration of Measure discussed in §2 of Lecture 3. $\hfill \Box$

We next normalize our embedding as $T := \sqrt{n/k} P$. By Lemma 9, we have for any fixed $z \in X$ that

$$(1 - \varepsilon) \|z\|_{2} \leq \|Tz\|_{2} \leq (1 + \varepsilon) \|z\|_{2}$$
(1)

holds with high probability. Thus for any fixed $x, y \in X$ and putting z = x - y we have that the inequality (1) holds with probability $1 - 2e^{-k\varepsilon^2/2}$.

Now we consider the *collective ensemble*. Notice that there are no more than n^2 pairs of $x, y \in X$. Then taking the union over all pairs we have the probability that (1) fails for some pair is less than or equal to

$$n^2 2e^{-k\varepsilon^2/2}$$

which is less than 1 if $k \ge C\varepsilon^{-2}\log n$. Hence with positive probability (1) holds with for all pairs. (End of proof for the J-L Flattening Lemma.)

Example 10 (Argument that $k \ge C(\varepsilon) \log n$ using volume point of view). Suppose for all $x, y \in X$ that

$$1/2 \leq ||x - y||_2 \leq 1.$$

Now suppose that $\varepsilon = 1/10$. Then by the J-L Flattening Lemma we can claim that

$$1/4 \le (1-\varepsilon)/2 \le ||Tx - Ty||_2 \le (1+\varepsilon) \le 2.$$

This tell us the following:

- The image of X under T is contained in a ball of radius 2 (i.e., $T(X) \subset 2B_2^k$)
- There are a disjoint $\frac{1}{8}$ -balls centered at points in $T(X) \subset (2+\frac{1}{8})B_2^k \subset 3B_2^k$ if

$$\begin{array}{rcl} n \cdot \operatorname{Vol}(\frac{1}{8}B_2^k) &\leq & \operatorname{Vol}(3B_2^k) \\ n \cdot (\frac{1}{8})^k \operatorname{Vol}(B_2^k) &\leq & 3^k \operatorname{Vol}(B_2^k) \\ & n &\leq & 24^k \\ & \log n &\lesssim & k. \end{array}$$

The last example showed that the $\log n$ factor in the J-L Flattening Lemma is sharp. The sharpness of the ε^{-2} factor is due to Alon and can be found in [6].

2 Related Work

Is there a version for

- ℓ_1 ? No: Lee and Naor [4], Brinkman and Charikar [2].
- ℓ_{∞} ? No.
- ℓ_p (for $p \neq 1, 2, \infty$)? Still open.

3 Related Readings

- Matousek [6] and [5]
- Vempala [8]

References

- D. Achlioptas. Database-friendly random projections. Proc. 20th Annual Symposium on Principles of Database Systems, 26:274–281, 2001.
- [2] B. Brinkman and M. Charikar. On the impossibility of dimension reduction in l_1 . Journal of ACM, 52(5):766–788, 2005.
- [3] W. B. Johnson and J. Lindenstrauss. Extensions of lipschitz mappings into a hilbert space. *Contemp. Math.*, 26:189–206, 1984.
- [4] J. R. Lee and A. Naor. Embedding the diamond graph in l_p and dimension reduction in l_1 . Geometric and Functional Analysis, 14(4):745–747, 2004.
- [5] J. Matousek. Website on open problems on embeddings of metric spaces. http://kam.mff.cuni.cz/~matousek/.
- [6] J. Matousek. Lectures on Discrete Geometry. Springer, Berlin-Heidelberg New York, 2002.
- [7] Vitali D. Milman and Gideon Schechtman. Asymptotic theory of finitedimensional normed spaces, volume 1200 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1986.
- [8] Santosh S. Vempala. The random projection method, volume 65 of DI-MACS Series in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society, Providence, 2004.