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1 Introduction

Let A be an m × n random subgaussian matrix. That is, its entries xij

are i.i.d. mean zero subgaussian random variables, or equivalently, they are
independent copies of a mean zero subgaussian random variable X.

We know that the operator norm‖A‖ = s1(A) = max
x∈Sn−1

‖Ax‖2, and we want

to bound this with high probability.

• lower estimates (trivial): ‖A‖ ≥ max(‖columns‖2, ‖rows‖2)

In particular, if A is a Bernoulli matrix, then ‖A‖ ≥ max(
√

n,
√

m).

• matching upper estimates: norm of a random matrix ≈ norms of
rows or columns

– Asymptotic: Consider the mode when n → ∞, m
n → y. Let X

be a random variable with EX2 = 1.(X need not be subgaussian
in this case.) The best asymptotic result is that

if EX4 < ∞, then ‖A‖√
n
→ 1 +

√
y a.s.;

if EX4 = ∞, then ‖A‖√
n
→∞ a.s..

For more details, see [5] [2] [1] [8].

– Non-asymptotic: We have the following main theorem in this
lecture.

Theorem 1 (Upper Bound). Let A be an m×n subgaussian random matrix.
Then ‖A‖ ≤ C(

√
n +

√
m) with probability 1− exp {−c(m + n)}.

Before we get to its proof, let us first pick up some useful tools.
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2 Discretization of the Sphere

In the investigation of ‖A‖, the difficulty is that the maximum “ max
x∈Sn−1

” is

taken over infinitely many random variables. This is also called a random
process. There are various tools to bound such random processes, from the
ε-net method (simplest) to the majorizing measure method (hardest). We
will work through the ε-net method in this lecture. For the majorizing mea-
sure method, see [3].

Idea: In order to reduce to a finite situation, we want first to discretize
Sn−1, or in other words, to replace the sphere with a finite subset. This is
possible because the sphere Sn−1 is compact, and every compact set has a
finite ε-net.

Definition 2. An ε-net of a subset K of a Banach space is a set N such
that ∀z ∈ K, ∃x ∈ N : ‖z − x‖ ≤ ε.

Note: If N is an ε-net, then every point of K is within distance ε from N ,
and K is covered by balls of radius ε centered at x ∈ N (these balls are
simply translates of D := ε BX).

Definition 3. The minimal cardinality of an ε-net of K is called the cov-
ering number of K by ε-balls,denoted by N(K, D). In other words,

N(K, D) := minimal number of translates of D to cover K.

Remark : The covering number gives a quantitative notion of compactness.

However, the covering number is hard to compute precisely even in the
simplest case where we try to cover the unit disk by smaller disks in R2.
So we may want to make estimates. The good news is that relatively sharp
estimates exist.

• lower estimate: Vol(K) ≤ N(K, D) · Vol(D) ⇒ N(K,D) ≥ Vol(K)
Vol(D) .

• matching upper estimate:

Proposition 4 (Covering Number). N(K, D) ≤ Vol(K)+ 1
2
D)

Vol( 1
2
D)

Proof. (constructive proof — greedy algorithm to find an ε-net of K)

We want to locate the centers in order to find the ε-net.
Start with an arbitrary point x1 ∈ K.
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Then choose x2 ∈ K: ‖x2 − x1‖ > ε.
Then choose x3 ∈ K: ‖x3 − xk‖ > ε, k = 1, 2.
. . .
Then choose xN ∈ K: ‖xN − xk‖ > ε, k = 1, . . . N − 1.
Stop if no more points are left.

Claim: N = {x1, . . . , xN} is an ε-net.
Suppose not. Then ∃z ∈ K such that ‖z − xk‖ > ε ∀k.
This contradicts the stopping criterion of the algorithm.

Then, if we shrink the radius of these balls to ε/2, they will be disjoint
(recall that each pair (xi, xj) is at least ε-apart). Thus, ε/2-balls (i.e. 1

2D)
centered at points of N are disjoint and contained in K + 1

2D. Therefore,

Vol(K +
1
2
D) ≥ N · Vol(

1
2
D),

and thus

N ≤ Vol(K + 1
2D)

Vol(1
2D)

.

Remark :An upper bound for vol(K + 1
2D) was found by Bourgain-Milman

[7].

Example 5. Let K be the unit ball BX in Rn. We want to cover the unit
ball with smaller balls D = εBX . Note that

K +
1
2
D = BX +

1
2
εBX = (1 +

1
2
ε)BX .

Then, the covering number

N(K,D) ≤ (1 + 1
2ε)n

(1
2ε)n

Corollary 6. Let ε ∈ (0, 1). For n-dimensional Banach spaces, the unit ball
has an ε-net of cardinality (3

ε )
n.

Remark : We can follow the same procedure to formulate a statement for
the unit sphere.

Proposition 7 (Discretization of ‖A‖). Let N be a 1
2 -net of Sn−1. Then

‖A‖ ≤ 2 max
x∈N

‖Ax‖2.(For simplicity, here we let ε = 1
2)
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Proof. Note that every z ∈ Sn−1 can be written as z = x + u, where x ∈
N , ‖u‖ ≤ ε = 1

2 . Then, by the triangle inequality,

‖A‖ ≤ max
x∈N

‖Ax‖2 + max
u : ‖u‖2≤ 1

2

‖Au‖2

But max
u : ‖u‖2≤ 1

2

‖Au‖2 =
1
2
‖A‖ by definition. So we have

‖A‖ ≤ max
x∈N

‖Ax‖2 +
1
2
‖A‖,

and therefore,
‖A‖ ≤ 2 max

x∈N
‖Ax‖2

Note: (Exercise) Further, we can discretize the Euclidean norm

‖Ax‖2 = max
y∈Sm−1

〈Ax, y〉 ≤ 2 max
y∈M

〈Ax, y〉,

where M is the 1
2 -net of Sm−1.

Corollary 8. Let N ,M be 1
2 -nets of Sn−1, Sm−1, respectively. Then,

‖A‖ ≤ 4max
x∈N
y∈M

〈Ax, y〉.

Note: We can find that |N | ≤ 6n and |M| ≤ 6n by Corollary 6 with
ε = 1

2 .

3 Proof of the Main Theorem

Now,we are ready to prove the main theorem that gives an upper estimate
of ‖A‖.
Proof. Let t > 0. By Corollary 8, we have

P(‖A‖ > t) ≤ P(max
x∈N
y∈M

〈Ax, y〉 >
t

4
).

Note that if max
x∈N
y∈M

〈Ax, y〉 > t
4 , then ∃ x ∈ N and y ∈M such that

〈Ax, y〉 >
t

4
.
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In other words, the event (max
x∈N
y∈M

〈Ax, y〉 >
t

4
) ⊆

⋃

x∈N
y∈M

(〈Ax, y〉 >
t

4
). Hence,

P(max
x∈N
y∈M

〈Ax, y〉 >
t

4
) ≤

∑

x∈N
y∈M

P(〈Ax, y〉 >
t

4
)

Now,fix any x ∈ N , y ∈M, and note that 〈Ax, y〉 is a random variable.

Claim: 〈Ax, y〉 is a subgaussian random variable.
Let x = (x1, . . . , xn) ∈ Rn, and let Xij denote the ijth entry in the

random matrix A. Then, the coordinates of Ax are

n∑

j=1

Xijxij .

Notice that x ∈ Sn−1 so
n∑

j=1

xj = 1. Also, Xij are independent mean zero

subgaussian random variables.
Then, by Theorem 5 from last lecture, the coordinates of Ax are independent
subgaussian random variables with mean zero. Then,

〈Ax, y〉 =
n∑

i=1

(Ax)i yi,

where
n∑

i=1

yi = 1. Using the same theorem again, we see that 〈Ax, y〉 is sub-

gaussian.

Now, knowing that 〈Ax, y〉 is subgaussian, we have, by definition,

P(〈Ax, y〉 >
t

4
) ≤ C exp (−ct2).

Then,
∑

x∈N
y∈M

P(〈Ax, y〉 >
t

4
) ≤ |N | · |M| · C exp (−ct2) ≤ 6m+n · C exp (−ct2)

Thus,with t = C(
√

n +
√

m), we obtain the desired result.
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Remark :

1. This proof is due to Litvak-Pajar-Rudelson-Tomczak-Vershynin [6].

2. The entries of A must essentially be subgaussian for this result to hold.
(Slight fluctuation is allowed)

3. Open problem: (fluctuations) P
(∣∣‖A‖ − E‖A‖

∣∣ > t
) ≤ ?

• Best result by Meckes [4]

• If A is gaussian, then E‖A‖ ≤ √
n +

√
m.
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