Non-Asymptotic Theory of Random Matrices
 Lecture 6: Norm of a Random Matrix

Lecturer: Roman Vershynin

Scribe: Yuting Yang

Tuesday, January 23, 2007

1 Introduction

Let A be an $m \times n$ random subgaussian matrix. That is, its entries $x_{i j}$ are i.i.d. mean zero subgaussian random variables, or equivalently, they are independent copies of a mean zero subgaussian random variable X.

We know that the operator norm $\|A\|=s_{1}(A)=\max _{x \in S^{n-1}}\|A x\|_{2}$, and we want to bound this with high probability.

- LOWER ESTIMATES (trivial): $\|A\| \geq \max \left(\|\right.$ columns $\left\|_{2},\right\|$ rows $\|_{2}$)

In particular, if A is a Bernoulli matrix, then $\|A\| \geq \max (\sqrt{n}, \sqrt{m})$.

- MATCHING UPPER ESTIMATES: norm of a random matrix \approx norms of rows or columns
- Asymptotic: Consider the mode when $n \rightarrow \infty, \frac{m}{n} \rightarrow y$. Let X be a random variable with $\mathbb{E} X^{2}=1$. (X need not be subgaussian in this case.) The best asymptotic result is that
if $\mathbb{E} X^{4}<\infty$, then $\frac{\|A\|}{\sqrt{n}} \rightarrow 1+\sqrt{y} \quad$ a.s.;
if $\mathbb{E} X^{4}=\infty$, then $\frac{\|A\|}{\sqrt{n}} \rightarrow \infty \quad$ a.s..

For more details, see [5] [2] [1] [8].

- Non-asymptotic: We have the following main theorem in this lecture.

Theorem 1 (Upper Bound). Let A be an $m \times n$ subgaussian random matrix. Then $\|A\| \leq C(\sqrt{n}+\sqrt{m})$ with probability $1-\exp \{-c(m+n)\}$.

Before we get to its proof, let us first pick up some useful tools.

2 Discretization of the Sphere

In the investigation of $\|A\|$, the difficulty is that the maximum " $\max _{x \in S^{n-1}}$ " is taken over infinitely many random variables. This is also called a random process. There are various tools to bound such random processes, from the ϵ-net method (simplest) to the majorizing measure method (hardest). We will work through the ϵ-net method in this lecture. For the majorizing measure method, see [3].

Idea: In order to reduce to a finite situation, we want first to discretize S^{n-1}, or in other words, to replace the sphere with a finite subset. This is possible because the sphere S^{n-1} is compact, and every compact set has a finite ϵ-net.

Definition 2. An ϵ-net of a subset K of a Banach space is a set \mathcal{N} such that $\forall z \in K, \exists x \in \mathcal{N}:\|z-x\| \leq \epsilon$.

Note: If \mathcal{N} is an ϵ-net, then every point of K is within distance ϵ from \mathcal{N}, and K is covered by balls of radius ϵ centered at $x \in \mathcal{N}$ (these balls are simply translates of $D:=\epsilon B_{X}$).

Definition 3. The minimal cardinality of an ϵ-net of K is called the covering number of K by ϵ-balls,denoted by $N(K, D)$. In other words,

$$
N(K, D):=\text { minimal number of translates of } D \text { to cover } K \text {. }
$$

Remark: The covering number gives a quantitative notion of compactness.
However, the covering number is hard to compute precisely even in the simplest case where we try to cover the unit disk by smaller disks in \mathbb{R}^{2}. So we may want to make estimates. The good news is that relatively sharp estimates exist.

- Lower estimate: $\operatorname{Vol}(K) \leq N(K, D) \cdot \operatorname{Vol}(D) \Rightarrow N(K, D) \geq \frac{\operatorname{Vol}(K)}{\operatorname{Vol}(D)}$.
- MATCHING UPPER ESTIMATE:

Proposition 4 (Covering Number). $N(K, D) \leq \frac{\left.\operatorname{Vol}(K)+\frac{1}{2} D\right)}{\operatorname{Vol}\left(\frac{1}{2} D\right)}$
Proof. (constructive proof - greedy algorithm to find an ϵ-net of K)
We want to locate the centers in order to find the ϵ-net.
Start with an arbitrary point $x_{1} \in K$.

Then choose $x_{2} \in K:\left\|x_{2}-x_{1}\right\|>\epsilon$.
Then choose $x_{3} \in K:\left\|x_{3}-x_{k}\right\|>\epsilon, k=1,2$.
Then choose $x_{N} \in K:\left\|x_{N}-x_{k}\right\|>\epsilon, k=1, \ldots N-1$.
Stop if no more points are left.
$\underline{\text { Claim: }} \mathcal{N}=\left\{x_{1}, \ldots, x_{N}\right\}$ is an ϵ-net.
Suppose not. Then $\exists z \in K$ such that $\left\|z-x_{k}\right\|>\epsilon \quad \forall k$.
This contradicts the stopping criterion of the algorithm.
Then, if we shrink the radius of these balls to $\epsilon / 2$, they will be disjoint (recall that each pair $\left(x_{i}, x_{j}\right)$ is at least ϵ-apart). Thus, $\epsilon / 2$-balls (i.e. $\frac{1}{2} D$) centered at points of \mathcal{N} are disjoint and contained in $K+\frac{1}{2} D$. Therefore,

$$
\operatorname{Vol}\left(K+\frac{1}{2} D\right) \geq N \cdot \operatorname{Vol}\left(\frac{1}{2} D\right)
$$

and thus

$$
N \leq \frac{\operatorname{Vol}\left(K+\frac{1}{2} D\right)}{\operatorname{Vol}\left(\frac{1}{2} D\right)}
$$

Remark:An upper bound for $\operatorname{vol}\left(K+\frac{1}{2} D\right)$ was found by Bourgain-Milman [7].

Example 5. Let K be the unit ball B_{X} in \mathbb{R}^{n}. We want to cover the unit ball with smaller balls $D=\epsilon B_{X}$. Note that

$$
K+\frac{1}{2} D=B_{X}+\frac{1}{2} \epsilon B_{X}=\left(1+\frac{1}{2} \epsilon\right) B_{X}
$$

Then, the covering number

$$
N(K, D) \leq \frac{\left(1+\frac{1}{2} \epsilon\right)^{n}}{\left(\frac{1}{2} \epsilon\right)^{n}}
$$

Corollary 6. Let $\epsilon \in(0,1)$. For n-dimensional Banach spaces, the unit ball has an ϵ-net of cardinality $\left(\frac{3}{\epsilon}\right)^{n}$.
Remark: We can follow the same procedure to formulate a statement for the unit sphere.
Proposition 7 (Discretization of $\|A\|$). Let \mathcal{N} be a $\frac{1}{2}$-net of S^{n-1}. Then $\|A\| \leq 2 \max _{x \in \mathcal{N}}\|A x\|_{2} \cdot\left(\right.$ For simplicity, here we let $\epsilon=\frac{1}{2}$)

Proof. Note that every $z \in S^{n-1}$ can be written as $z=x+u$, where $x \in$ $\mathcal{N},\|u\| \leq \epsilon=\frac{1}{2}$. Then, by the triangle inequality,

$$
\|A\| \leq \max _{x \in \mathcal{N}}\|A x\|_{2}+\max _{u:\|u\|_{2} \leq \frac{1}{2}}\|A u\|_{2}
$$

But $\max _{u:\|u\|_{2} \leq \frac{1}{2}}\|A u\|_{2}=\frac{1}{2}\|A\|$ by definition. So we have

$$
\|A\| \leq \max _{x \in \mathcal{N}}\|A x\|_{2}+\frac{1}{2}\|A\|
$$

and therefore,

$$
\|A\| \leq 2 \max _{x \in \mathcal{N}}\|A x\|_{2}
$$

Note: (Exercise) Further, we can discretize the Euclidean norm

$$
\|A x\|_{2}=\max _{y \in S^{m-1}}\langle A x, y\rangle \leq 2 \max _{y \in \mathcal{M}}\langle A x, y\rangle
$$

where \mathcal{M} is the $\frac{1}{2}$-net of S^{m-1}.
Corollary 8. Let \mathcal{N}, \mathcal{M} be $\frac{1}{2}$-nets of S^{n-1}, S^{m-1}, respectively. Then,

$$
\|A\| \leq 4 \max _{\substack{x \in \mathcal{N} \\ y \in \mathcal{M}}}\langle A x, y\rangle
$$

Note: We can find that $|\mathcal{N}| \leq 6^{n}$ and $|\mathcal{M}| \leq 6^{n}$ by Corollary 6 with $\epsilon=\frac{1}{2}$.

3 Proof of the Main Theorem

Now, we are ready to prove the main theorem that gives an upper estimate of $\|A\|$.

Proof. Let $t>0$. By Corollary 8, we have

$$
\mathbb{P}(\|A\|>t) \leq \mathbb{P}\left(\max _{\substack{x \in \mathcal{N} \\ y \in \mathcal{M}}}\langle A x, y\rangle>\frac{t}{4}\right)
$$

Note that if $\max _{\substack{x \in \mathcal{N} \\ y \in \mathcal{M}}}\langle A x, y\rangle>\frac{t}{4}$, then $\exists x \in \mathcal{N}$ and $y \in \mathcal{M} \quad$ such that

$$
\langle A x, y\rangle>\frac{t}{4}
$$

In other words, the event $\left(\max _{\substack{x \in \mathcal{N} \\ y \in \mathcal{M}}}\langle A x, y\rangle>\frac{t}{4}\right) \subseteq \bigcup_{\substack{x \in \mathcal{N} \\ y \in \mathcal{M}}}\left(\langle A x, y\rangle>\frac{t}{4}\right)$. Hence,

$$
\mathbb{P}\left(\max _{\substack{x \in \mathcal{N} \\ y \in \mathcal{M}}}\langle A x, y\rangle>\frac{t}{4}\right) \leq \sum_{\substack{x \in \mathcal{N} \\ y \in \mathcal{M}}} \mathbb{P}\left(\langle A x, y\rangle>\frac{t}{4}\right)
$$

Now,fix any $x \in \mathcal{N}, y \in \mathcal{M}$, and note that $\langle A x, y\rangle$ is a random variable.

Claim: $\langle A x, y\rangle$ is a subgaussian random variable.
Let $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, and let $X_{i j}$ denote the $i j^{t h}$ entry in the random matrix A . Then, the coordinates of $A x$ are

$$
\sum_{j=1}^{n} X_{i j} x_{i j}
$$

Notice that $x \in S^{n-1}$ so $\sum_{j=1}^{n} x_{j}=1$. Also, $X_{i j}$ are independent mean zero subgaussian random variables.
Then, by Theorem 5 from last lecture, the coordinates of $A x$ are independent subgaussian random variables with mean zero. Then,

$$
\langle A x, y\rangle=\sum_{i=1}^{n}(A x)_{i} y_{i}
$$

where $\sum_{i=1}^{n} y_{i}=1$. Using the same theorem again, we see that $\langle A x, y\rangle$ is subgaussian.

Now, knowing that $\langle A x, y\rangle$ is subgaussian, we have, by definition,

$$
\mathbb{P}\left(\langle A x, y\rangle>\frac{t}{4}\right) \leq C \exp \left(-c t^{2}\right)
$$

Then,

$$
\sum_{\substack{x \in \mathcal{N} \\ y \in \mathcal{M}}} \mathbb{P}\left(\langle A x, y\rangle>\frac{t}{4}\right) \leq|\mathcal{N}| \cdot|\mathcal{M}| \cdot C \exp \left(-c t^{2}\right) \leq 6^{m+n} \cdot C \exp \left(-c t^{2}\right)
$$

Thus, with $t=C(\sqrt{n}+\sqrt{m})$, we obtain the desired result.

Remark:

1. This proof is due to Litvak-Pajar-Rudelson-Tomczak-Vershynin [6].
2. The entries of A must essentially be subgaussian for this result to hold. (Slight fluctuation is allowed)
3. Open problem: (fluctuations) $\mathbb{P}(|\|A\|-\mathbb{E}\|A\||>t) \leq$?

- Best result by Meckes [4]
- If A is gaussian, then $\mathbb{E}\|A\| \leq \sqrt{n}+\sqrt{m}$.

References

[1] Soshnikov A. Gaussian limit for determinantal random point fields. Annals of Probability, 30:171, 2002.
[2] Silverstein J.W. On the weak limit of the largest eigenvalue of a large dimensional sample variance matrix. Journal of Multivariate Analysis, 30:1, 1989.
[3] Talagrand M. Majorizing measures:the generic chaining. Annals of Probability, 24:1049, 1996.
[4] Meckes M.W. Concentration of norms and eigenvalues of random matrices. Journal of Functional Analysis, 211:508, 2004.
[5] Geman S. A limit theorem for the norm of random matrices. Annals of Probability, 8:252, 1980.
[6] A. Litvak ; A. Pajor; M. Rudelson; N. Tomczak-Jaegermann. Smallest singular values of random matrices and geometry of random polytopes. Advances in Mathematics, 195:491, 2005.
[7] J. Bourgain; V.D.Milman. New volume ratio properties for convex symmetric bodies in r^{n}. Invent.Math., 88:319, 1987.
[8] Z.D.Bai ; J.W.Silverstein ; Y.Q.Yin. A note on the largest eigenvalue of a large dimensional sample covariance matrix. Journal of Multivariate Analysis, 26:166, 1988.

