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Let A : m X n matrix with i.i.d. entries, m > n.
We want to estimate

E sup ||[|Azllz—+vm]| <7,
xesSn—1
(we want C'y/n in place of ”?” here, it would be better estimate than in
asymptotic theory: C(y/m + y/n) ). Under the absolute value sign here
stands a random variable, even family of random variables indexed by points
of sphere z € S"~!, i.e. a random process.

Random process:
(X¢)ter is a collection of random variables indexed by t € T .

e Classical: T = [a, b] - time interval. Examples of such processes are called
Levy Processes.

(Ex.: Brownian motion)

e General: T is arbitrary, such as T = S™~ L.

e ”"Size of the random process”:

E sup X; (index set has to be compact)
teT

How far a particle can get in time 7" 7
(Ex.: The highest level of water in a river in 10 years)

Previous approach: Discretization of T'.
Consider an e-net A/ of T: cover by e-balls :




Compute E sup Xy,
teN

approximate

Definition 1 (Covering Numbers). Let (T,d) be a compact metric space,
e > 0. Then covering number N(T',e) = minimal cardinality of an e-net of
T = minimum possible number of €-balls to cover T'.

Measure of compactness of T
log N(T,¢) is called metric entropy of T'.

Sharper approach: Multiscale discretization.

Cover T progressively with radius e*-balls, k = 1,2,3, ...
The result will be

Dudley’s Integral Inequality

Assumptions:
1) EX; =0 for all ¢
2) Increments | X; — X,| are proportional to the distance d(t, s).

| Xt —Xs|

As) is subgaussian for all ¢,s:

P(IX; — X,| > u-d(t,s)) < Ce for u>0,

"subgaussian increments”. (Here C' and c¢ are some constants).



Theorem 2 (Dudley [1, 2]). : For a process with subgaussian increments

Esup X; < C/ V0og N(T,¢e)de
0

teT
T T
probabilistic geometric (in 7T')

(one can replace the upper limit of oo in the integral with diam(T)).
Singularity here is at 0.

~ (1
(For sphere N(T,¢) =~ ()" ).
(vIogz = inverse of **).
Proof: Let diam(T) = 1. (Ezercise: general case)

1) Let t9 € T be arbitrary (reference point),

EsupX; = Esup(X; —EX;,) < Esup(X:— Xy,),
teT teT teT

by Jensen’s inequality, because sup is convex function.
2) Multiscale discretization of T":

CHAINING :

m1(t)

@ Let N7 be a 1/2-net of T of
size N1 = N(T,1/2)
Find 71(t) € Nj nearest to t



Xt — Xt() - (Xt - Xﬂ'l(t)) + (Xﬂ'l(t) B Xto)

1
there are at most N

smaller than before (1/2) such r.v.s (not too
many )

m(t)  ma(t)

@ Let N3 be a 1/4-net of T of
size Ny = N(T,1/4)
Find my(t) € N3 nearest to t

Xt — Xto = (Xt - X7r2(t)) + (X7r2(t)) - Xﬂ'l(t)) + (Xm(t) - Xto)
7 7

even smaller(1/4) there are (at most ?) Ny Ny < N2 such r.v.’s

® Let N be a 27%-net of T of
size Ny = N(T,27%)
Find 7 (t) € N} nearest to ¢

[o¢]
Xy — Xyy = Z Xop) = Xme 1 t)
k=1
;
chaining identity (mo(t) = to),

because X; — X, ;) — 0 a.s. (Ezercise: use mi(t) — t).



Nice properties of multiscale discretization:

1)Increments are small:

Wk(t) 7T]€_1(t)

d(mp(t), mh_1 () < d(mp(t), ) + d(mp_y (t),t) < 27F 427 (k=1 = 3. 97k

2) There are at most NyNi_1 < NZ pairs of (mj(t), mx—1(t)), whatever ¢ is.

Increments:

2.2

P (|X7rk(t) - XWk_1(t)| >Uu- ak) < Cexp <_ o ) = Cexp ( - 2%h? ak)

d(mp(t), mp_1(1))2

(holds for Vay > 0).
Thus we can bound every increment in the Chaining Identity:
the failure (to bound) probability is

oo
=P(3k, 3t € T: | Xppy— Xy 0] > u-ar) Z -Cexp(—c-2%u’a}).

In case of success: if Vk, Vt € T

|Xﬂ'k(t) _Xﬂk71(t)| < uag,
then | Xy — Xy| < u)_ ay.

Hence
P (sgp | X — Xy | > UZ%) < p. (%)
k



It remains to choose weights a;. We have tradeoff here: we want > ay to
be small, but for decreasing failure probability a; have to be large.
How large ? Say, for u > 1 we want the summands in p be ~ 27%. Therefore

ap = - 27 /log 2k N2 (for u>1).

p < Zczvk (2FN2) % < 022 fou?

Then

So subgaussian failure probability obeys the bound |p < (C'- 9—u?

This way we get an estimate for the sum of weights which appears in (*):

Zak:c'ZQ_k\/long'N]? < (use Va+b < 2(v/a+ Vb))
”22 \/log2k+22 Viog Ni,) <

< const > const because
diamT =1, Ny > 2

1
< "3 27" log Ny = €Y 27F\Jlog N(T,27+) < CIV/O Viog N(T,e)de := S
k k

(compare series with integrals in the last inequality)
We have

P (sup | Xy — Xy | > uS> < Ce ¥ for u>1.
t

Thus, the random variable 4 sup, | X; — X,| is subgaussian and Dudley’s in-
equality follows immediately.

Problem: to find sharp estimate (a function better than S - will be done
next time - see Lecture 9).
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