Non-Asymptotic Theory of Random Matrices Lecture 8: DUDLEY'S INTEGRAL INEQUALITY

Lecturer: Roman Vershynin Scribe: Igor Rumanov

Tuesday, January 30, 2007
Let $A: m \times n$ matrix with i.i.d. entries, $m>n$.
We want to estimate

$$
\mathbb{E} \sup _{x \in S^{n-1}}\left|\|A x\|_{2}-\sqrt{m}\right| \leq ?
$$

(we want $C \sqrt{n}$ in place of "?" here, it would be better estimate than in asymptotic theory: $C(\sqrt{m}+\sqrt{n})$). Under the absolute value sign here stands a random variable, even family of random variables indexed by points of sphere $x \in S^{n-1}$, i.e. a random process.

Random process:

$\left(X_{t}\right)_{t \in T}$ is a collection of random variables indexed by $t \in T$.

- Classical: $T=[a, b]$ - time interval. Examples of such processes are called Levy Processes.
(Ex.: Brownian motion)
- General: T is arbitrary, such as $T=S^{n-1}$.
- "Size of the random process":

$$
\mathbb{E} \sup _{t \in T} X_{t} \quad \text { (index set has to be compact) }
$$

How far a particle can get in time T ?
(Ex.: The highest level of water in a river in 10 years)

Previous approach: Discretization of T.

Compute $\mathbb{E} \sup _{t \in \mathcal{N}} X_{t}$, approximate

Definition 1 (Covering Numbers). Let (T, d) be a compact metric space, $\varepsilon>0$. Then covering number $N(T, \varepsilon)=$ minimal cardinality of an ε-net of $T=$ minimum possible number of ε-balls to cover T.

Measure of compactness of T :

Sharper approach: Multiscale discretization.
Cover T progressively with radius ε^{k}-balls, $k=1,2,3, \ldots$
The result will be

Dudley's Integral Inequality

Assumptions:

1) $\mathbb{E} X_{t}=0$ for all t
2) Increments $\left|X_{t}-X_{s}\right|$ are proportional to the distance $d(t, s)$.
$\frac{\left|X_{t}-X_{s}\right|}{d(t, s)}$ is subgaussian for all t, s :

$$
\mathbb{P}\left(\left|X_{t}-X_{s}\right|>u \cdot d(t, s)\right) \leq C e^{-c u^{2}} \quad \text { for } u>0
$$

"subgaussian increments". (Here C and c are some constants).

Theorem 2 (Dudley [1, 2]). : For a process with subgaussian increments

$$
\begin{array}{rc}
\mathbb{E} \sup _{t \in T} X_{t} \leq & C \int_{0}^{\infty} \sqrt{\log N(T, \varepsilon)} d \varepsilon \\
\uparrow & \uparrow \\
\text { probabilistic } & \text { geometric (in } T \text {) }
\end{array}
$$

(one can replace the upper limit of ∞ in the integral with $\operatorname{diam}(T)$). Singularity here is at 0 .
(For sphere $\left.N(T, \varepsilon) \approx\left(\frac{1}{\varepsilon}\right)^{n}\right)$.
$\left(\sqrt{\log x}=\right.$ inverse of $\left.e^{x^{2}}\right)$.
Proof: Let $\operatorname{diam}(T)=1 . \quad$ (Exercise: general case)

1) Let $t_{0} \in T$ be arbitrary (reference point),

$$
\mathbb{E} \sup _{t \in T} X_{t}=\mathbb{E} \sup _{t \in T}\left(X_{t}-\mathbb{E} X_{t_{0}}\right) \leq \mathbb{E} \sup _{t \in T}\left(X_{t}-X_{t_{0}}\right),
$$

by Jensen's inequality, because sup is convex function.
2) Multiscale discretization of T :

CHAINING :

(1) Let \mathcal{N}_{1} be a $1 / 2$-net of T of size $N_{1}=N(T, 1 / 2)$
Find $\pi_{1}(t) \in \mathcal{N}_{1}$ nearest to t

\[

\]

(2) Let \mathcal{N}_{2} be a $1 / 4$-net of T of size $N_{2}=N(T, 1 / 4)$
Find $\pi_{2}(t) \in \mathcal{N}_{2}$ nearest to t

$$
\begin{gathered}
\left.X_{t}-X_{t_{0}}=\left(X_{t}-X_{\pi_{2}(t)}\right)+\left(X_{\pi_{2}(t)}\right)-X_{\pi_{1}(t)}\right)+\left(X_{\pi_{1}(t)}-X_{t_{0}}\right) \\
\uparrow \\
\uparrow \\
\text { even smaller }(1 / 4)
\end{gathered} \quad \text { there are (at most ?) } N_{1} N_{2} \leq N_{2}^{2} \text { such r.v.'s }
$$

(6) Let \mathcal{N}_{k} be a 2^{-k}-net of T of size $N_{k}=N\left(T, 2^{-k}\right)$
Find $\pi_{k}(t) \in \mathcal{N}_{k}$ nearest to t

$$
\begin{gathered}
X_{t}-X_{t_{0}}=\sum_{k=1}^{\infty} X_{\pi_{k}(t)}-X_{\pi_{k-1}(t)} \\
\text { chaining identity }
\end{gathered}
$$

because $X_{t}-X_{\pi_{k}(t)} \rightarrow 0$ a.s. $\quad\left(\underline{\text { Exercise: }}\right.$ use $\left.\pi_{k}(t) \rightarrow t\right)$.

Nice properties of multiscale discretization:
1)Increments are small:

$$
d\left(\pi_{k}(t), \pi_{k-1}(t)\right) \leq d\left(\pi_{k}(t), t\right)+d\left(\pi_{k-1}(t), t\right) \leq 2^{-k}+2^{-(k-1)}=3 \cdot 2^{-k}
$$

2) There are at most $N_{k} N_{k-1} \leq N_{k}^{2}$ pairs of $\left(\pi_{k}(t), \pi_{k-1}(t)\right)$, whatever t is.

Increments:

$\mathbb{P}\left(\left|X_{\pi_{k}(t)}-X_{\pi_{k-1}}(t)\right|>u \cdot a_{k}\right) \leq C \exp \left(-\frac{c u^{2} a_{k}^{2}}{d\left(\pi_{k}(t), \pi_{k-1}(t)\right)^{2}}\right)=C \exp \left(-c^{\prime} \cdot 2^{2 k} u^{2} a_{k}^{2}\right)$
(holds for $\forall a_{k}>0$).
Thus we can bound every increment in the Chaining Identity: the failure (to bound) probability is
$p=\mathbb{P}\left(\exists k, \exists t \in T:\left|X_{\pi_{k}(t)}-X_{\pi_{k-1}(t)}\right|>u \cdot a_{k}\right) \leq \sum_{k=1}^{\infty} N_{k}^{2} \cdot C \exp \left(-c \cdot 2^{2 k} u^{2} a_{k}^{2}\right)$.
In case of success: if $\forall k, \forall t \in T$:

$$
\left|X_{\pi_{k}(t)}-X_{\pi_{k-1}(t)}\right| \leq u a_{k},
$$

then $\left|X_{t}-X_{t_{0}}\right| \leq u \sum a_{k}$.
Hence

$$
\begin{equation*}
\mathbb{P}\left(\sup _{t}\left|X_{t}-X_{t_{0}}\right|>u \sum_{k} a_{k}\right) \leq p \tag{*}
\end{equation*}
$$

It remains to choose weights a_{k}. We have tradeoff here: we want $\sum a_{k}$ to be small, but for decreasing failure probability a_{k} have to be large.
How large? Say, for $u \geq 1$ we want the summands in p be $\sim 2^{-k}$. Therefore

$$
a_{k}=c^{\prime} \cdot 2^{-k} \sqrt{\log 2^{k} N_{k}^{2}} \quad(\text { for } u \geq 1)
$$

Then

$$
p \leq \sum_{k=1}^{\infty} C N_{k}^{2} \cdot\left(2^{k} N_{k}^{2}\right)^{-u^{2}} \leq C \sum_{k=1}^{\infty} 2^{-k u^{2}} .
$$

So subgaussian failure probability obeys the bound $p \leq C \cdot 2^{-u^{2}}$.
This way we get an estimate for the sum of weights which appears in $\left(^{*}\right)$:

$$
\begin{gathered}
\sum a_{k}=c^{\prime} \sum 2^{-k} \sqrt{\log 2^{k} N_{k}^{2}} \leq \quad(\text { use } \sqrt{a+b} \leq 2(\sqrt{a}+\sqrt{b})) \\
\leq c^{\prime \prime}(\underbrace{\sum^{\operatorname{s} 2^{-k} \sqrt{\log 2^{k}}}+\underbrace{\geq \text { const because }}}_{\leq \text {const }} \begin{array}{l}
\left.\sum^{\sum 2^{-k} \sqrt{\log N_{k}}}\right) \leq \\
\\
\text { diamT }=1, N_{1} \geq 2
\end{array} \\
\leq C^{\prime \prime \prime} \sum_{k} 2^{-k} \sqrt{\log N_{k}}=C^{\prime \prime \prime} \sum_{k} 2^{-k} \sqrt{\log N\left(T, 2^{-k}\right)} \leq C^{I V} \int_{0}^{1} \sqrt{\log N(T, \varepsilon)} d \varepsilon:=S
\end{gathered}
$$

(compare series with integrals in the last inequality)
We have

$$
\mathbb{P}\left(\sup _{t}\left|X_{t}-X_{t_{0}}\right|>u S\right) \leq C e^{-u^{2}} \quad \text { for } u \geq 1
$$

Thus, the random variable $\frac{1}{S} \sup _{t}\left|X_{t}-X_{s}\right|$ is subgaussian and Dudley's inequality follows immediately.

Problem: to find sharp estimate (a function better than S - will be done next time - see Lecture 9).

References

[1] Michel Ledoux and Michel Talagrand. Probability in Banach spaces, volume 23 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1991.
[2] Michel Talagrand. The generic chaining. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2005.

