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Let A : m × n matrix with i.i.d. entries, m > n.

We want to estimate

E sup
x∈Sn−1

| ||Ax||2 −
√

m | ≤ ?,

(we want C
√

n in place of ”?” here, it would be better estimate than in
asymptotic theory: C(

√
m +

√
n) ). Under the absolute value sign here

stands a random variable, even family of random variables indexed by points
of sphere x ∈ Sn−1, i.e. a random process.

Random process:

(Xt)t∈T is a collection of random variables indexed by t ∈ T .

• Classical: T = [a, b] - time interval. Examples of such processes are called
Levy Processes.
(Ex.: Brownian motion)
• General: T is arbitrary, such as T = Sn−1.
• ”Size of the random process”:

E sup
t∈T

Xt (index set has to be compact)

How far a particle can get in time T ?
(Ex.: The highest level of water in a river in 10 years)

Previous approach: Discretization of T .
Consider an ε-net N of T : cover by ε-balls :
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Compute E sup
t∈N

Xt,

approximate

Definition 1 (Covering Numbers). Let (T, d) be a compact metric space,
ε > 0. Then covering number N(T, ε) = minimal cardinality of an ε-net of
T = minimum possible number of ε-balls to cover T .

Measure of compactness of T :

log N(T, ε) is called metric entropy of T .

Sharper approach: Multiscale discretization.

Cover T progressively with radius εk-balls, k = 1, 2, 3, ...
The result will be

Dudley’s Integral Inequality

Assumptions:
1) EXt = 0 for all t
2) Increments |Xt − Xs| are proportional to the distance d(t, s).

|Xt−Xs|
d(t,s) is subgaussian for all t,s:

P(|Xt − Xs| > u · d(t, s)) ≤ Ce−cu2

for u > 0,

”subgaussian increments”. (Here C and c are some constants).
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Theorem 2 (Dudley [1, 2]). : For a process with subgaussian increments

E sup
t∈T

Xt ≤ C

∫ ∞

0

√

log N(T, ε)dε

↑ ↑
probabilistic geometric (in T )

(one can replace the upper limit of ∞ in the integral with diam(T )).
Singularity here is at 0.

(For sphere N(T, ε) ≈ (1
ε
)n ).

(
√

logx = inverse of ex2

).

Proof: Let diam(T ) = 1. (Exercise: general case)

1) Let t0 ∈ T be arbitrary (reference point),

E sup
t∈T

Xt = E sup
t∈T

(Xt − EXt0) ≤ E sup
t∈T

(Xt − Xt0),

by Jensen’s inequality, because sup is convex function.

2) Multiscale discretization of T :

CHAINING :

π1(t)

t

t
0

T
©1 Let N1 be a 1/2-net of T of

size N1 = N(T, 1/2)
Find π1(t) ∈ N1 nearest to t
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Xt − Xt0 = (Xt − Xπ1(t)) + (Xπ1(t) − Xt0)

↑ ↑

smaller than before (1/2)

there are at most N1

such r.v.’s (not too
many)

π1(t) π2(t)

tt 0

©2 Let N2 be a 1/4-net of T of
size N2 = N(T, 1/4)
Find π2(t) ∈ N2 nearest to t

Xt − Xt0 = (Xt − Xπ2(t)) + (Xπ2(t)) − Xπ1(t)) + (Xπ1(t) − Xt0)

↑ ↑
even smaller(1/4) there are (at most ?) N1N2 ≤ N2

2 such r.v.’s
.......................................................................................................

©k Let Nk be a 2−k-net of T of
size Nk = N(T, 2−k)
Find πk(t) ∈ Nk nearest to t

.......................................................................................................

Xt − Xt0 =

∞∑

k=1

Xπk(t) − Xπk−1(t)

↑
chaining identity (π0(t) = t0),

because Xt − Xπk(t) → 0 a.s. (Exercise: use πk(t) → t).
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Nice properties of multiscale discretization:

1)Increments are small:

t

22
−k

−(k−1)

πk(t) πk−1(t)

d(πk(t), πk−1(t)) ≤ d(πk(t), t) + d(πk−1(t), t) ≤ 2−k + 2−(k−1) = 3 · 2−k.

2) There are at most NkNk−1 ≤ N2
k pairs of (πk(t), πk−1(t)), whatever t is.

Increments:

P
(
|Xπk(t) − Xπk−1

(t)| > u · ak

)
≤ C exp

(

− cu2a2
k

d(πk(t), πk−1(t))2

)

= C exp
(

−c′ · 22ku2a2
k

)

(holds for ∀ak > 0).
Thus we can bound every increment in the Chaining Identity:
the failure (to bound) probability is

p = P(∃k,∃t ∈ T : |Xπk(t)−Xπk−1(t)| > u·ak) ≤
∞∑

k=1

N2
k ·C exp(−c·22ku2a2

k).

In case of success: if ∀k, ∀t ∈ T :

|Xπk(t) − Xπk−1(t)| ≤ uak,

then |Xt − Xt0 | ≤ u
∑

ak.
Hence

P

(

sup
t

|Xt − Xt0 | > u
∑

k

ak

)

≤ p. (∗)
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It remains to choose weights ak. We have tradeoff here: we want
∑

ak to
be small, but for decreasing failure probability ak have to be large.
How large ? Say, for u ≥ 1 we want the summands in p be ∼ 2−k. Therefore

ak = c′ · 2−k
√

log 2kN2
k

(for u ≥ 1).

Then

p ≤
∞∑

k=1

CN2
k · (2kN2

k )−u2 ≤ C

∞∑

k=1

2−ku2

.

So subgaussian failure probability obeys the bound p ≤ C · 2−u2

.

This way we get an estimate for the sum of weights which appears in (*):

∑

ak = c′
∑

2−k
√

log 2kN2
k ≤ (use

√
a + b ≤ 2(

√
a +

√
b))

≤ c′′(
∑

2−k
√

log 2k

︸ ︷︷ ︸

+
∑

2−k
√

log Nk
︸ ︷︷ ︸

) ≤

≤ const ≥ const because
diamT = 1, N1 ≥ 2

≤ C ′′′
∑

k

2−k
√

log Nk = C ′′′
∑

k

2−k
√

log N(T, 2−k) ≤ CIV

∫ 1

0

√

log N(T, ε)dε := S

(compare series with integrals in the last inequality)
We have

P

(

sup
t

|Xt − Xt0 | > uS

)

≤ Ce−u2

for u ≥ 1.

Thus, the random variable 1
S

supt |Xt −Xs| is subgaussian and Dudley’s in-
equality follows immediately.

Problem: to find sharp estimate (a function better than S - will be done
next time - see Lecture 9).
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