
Non-Asymptotic Theory of Random Matrices

Lecture 9: Applications of Dudley’s Inequality: Sharper bounds

for random matrices

Lecturer: Roman Vershynin Scribe: Brendan Farrell

Thursday, February 1, 2006

Recall Dudley’s Inequality from lecture 8: Let (T, d) be a metric space
and (Xt)t∈T a random process on T with subgaussian increments, that is

P (|Xt − Xs| > u · d(t, s)) ≤ exp(−u2)

for all t, s ∈ T and all u > 0. Then

E sup
t∈T

Xt ≤ C

∫ ∞

0

√

log N(t, ε)dε,

where N(t, ε) is the ε-covering number of T . Brownian motion is an example
of random process, where T is time and Xt is a random variable that gives
the position of the particle at time t. See [2, 3, 1].

Theorem 1. Let A be an n × m, m > n, random matrix with i.i.d, mean
zero, variance 1, subgaussian entries. Then, with probability 1−C exp(−m),

√
m − c

√
n ≤ s1(A) ≤ sn(A) ≤

√
m + c

√
n.

Equivalently, for every vector x ∈ R
n with ‖x‖2 = 1,

√
m − C

√
n ≤ ‖Ax‖2 ≤

√
m + C

√
n. (1)

This shows that 1√
m

A is an “almost isometry” if m >> n. Our approach

to prove this theorem is to establish a bound on

Xx :=

∣

∣

∣

∣

1

m
‖Ax‖2

2 − 1

∣

∣

∣

∣

for all x ∈ Sn−1. We work with the random process (Xx)x∈T on T =
(Sn−1, ‖ · ‖2), and establish a bound on E supx∈T Xx using Dudley’s inequal-
ity. First we address whether the increments |Xx−Xy| are subgaussian. We
rewrite ‖Ax‖2

2
as ‖Ax‖2

2
=
∑m

k=1
〈xk, x〉, where xk denotes the kth row of A.

|Xx − Xy| ≤ | 1

m

m
∑

k=1

〈xk, x〉2 − 〈xk, y〉2|

= | 1

m

m
∑

k=1

zk|,
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where zk = 〈xk, x−y〉〈xk, x+y〉. The zk are not subgaussian, yet 〈xk, x−y〉
and 〈xk, x+y〉 are individually subgaussian (by a previous lemma). We have
two bounds

P(|〈xk, x − y〉| >
√

u‖x − y‖2) ≤ Ce−cu

P(|〈xk, x + y〉| >
√

u‖x + y‖2) ≤ Ce−cu,

and, therefore, considering the product |zk| = |〈xk, x + y〉〈xk, x − y〉|, we
have

P(|zk| >
√

u‖x − y‖2‖x + y‖2) ≤ 2Ce−cu.

Since ‖x + y‖ ≤ 2,

P(|zk| >
√

u‖x − y‖2) ≤ 2Ce−c′u;

that is, zk are subexponential. Recall from lecture 7 the Large Deviation
Inequality; it says that the sum of subexponential random variables is a mix-
ture of subexponential and subgaussian. That is, in its most concentrated
region, the sum is distributed like a gaussian, yet its tails are subexponential.
We will use the following corallary.

Corollary 2 (Bernstein’s Inequality for Subexponential Random Variables).
If Yk are i.i.d. subexponential random variables, then

P(| 1

m

m
∑

k=1

Yk| ≥ u) ≤ C exp(−Cm · min(u, u2)).

We apply this corollary to Yk = zk

‖x−y‖2
as follows:

Yk =
zk

‖x − y‖2

= P(| 1

m

m
∑

k=1

zk| > u‖x − y‖2)

= P(|Xx − Xy| > u‖x − y‖2)

≤ C exp(−Cm · min(u, u2))

Dudley’s Inequality may equivalently be stated for subgaussian/subexpontial
tails as

E sup
t∈T

Xt ≤ C

∫ ∞

0

(
√

log(N(t, ε))

m
+

log(N(T, ε))

m

)

dε.

2



Exercise 3. Determine the appropriate weights in the proof of Dudley’s
inequality to adopt the proof to the subgaussian/subexponential case.

In our case, T = (Sn−1, ‖ · ‖2). Therefore, N(T, ε) ≤ ( 3

ε
)n (see lecture 6).

E sup
t∈T

Xt ≤ C

∫ ∞

0

(
√

n

m
log(N(T, ε)) +

log(N(T, ε))

m

)

dε

≤ C

∫ ∞

0

(

√

n

m
log(

3

ε
) +

log(3

ε
)

m

)

dε

= C

∫

1=diam T

0

(

√

n

m
log(

3

ε
) +

log(N(T, ε))

m

)

dε

= C(

√

m

n
+

n

m
)

= C ′
√

m

n
.

Thus

EXx = E

∣

∣

∣

∣

1

m
‖Ax‖2

2 − 1

∣

∣

∣

∣

(2)

≤ C ′
√

m

n
(3)

Exercise 4. Show that equation (1), and hence Theorem 1., follows from
(3).
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