Non-Asymptotic Theory of Random Matrices

Lecture 9: Applications of Dudley's Inequality: Sharper bounds

 for random matricesLecturer: Roman Vershynin
Scribe: Brendan Farrell
Thursday, February 1, 2006
Recall Dudley's Inequality from lecture 8: Let (T, d) be a metric space and $\left(X_{t}\right)_{t \in T}$ a random process on T with subgaussian increments, that is

$$
\mathbb{P}\left(\left|X_{t}-X_{s}\right|>u \cdot d(t, s)\right) \leq \exp \left(-u^{2}\right)
$$

for all $t, s \in T$ and all $u>0$. Then

$$
\mathbb{E} \sup _{t \in T} X_{t} \leq C \int_{0}^{\infty} \sqrt{\log N(t, \epsilon)} d \epsilon
$$

where $N(t, \epsilon)$ is the ϵ-covering number of T. Brownian motion is an example of random process, where T is time and X_{t} is a random variable that gives the position of the particle at time t. See $[2,3,1]$.
Theorem 1. Let A be an $n \times m, m>n$, random matrix with i.i.d, mean zero, variance 1, subgaussian entries. Then, with probability $1-C \exp (-m)$,

$$
\sqrt{m}-c \sqrt{n} \leq s_{1}(A) \leq s_{n}(A) \leq \sqrt{m}+c \sqrt{n} .
$$

Equivalently, for every vector $x \in \mathbb{R}^{n}$ with $\|x\|_{2}=1$,

$$
\begin{equation*}
\sqrt{m}-C \sqrt{n} \leq\|A x\|_{2} \leq \sqrt{m}+C \sqrt{n} . \tag{1}
\end{equation*}
$$

This shows that $\frac{1}{\sqrt{m}} A$ is an "almost isometry" if $m \gg n$. Our approach to prove this theorem is to establish a bound on

$$
X_{x}:=\left|\frac{1}{m}\|A x\|_{2}^{2}-1\right|
$$

for all $x \in S^{n-1}$. We work with the random process $\left(X_{x}\right)_{x \in T}$ on $T=$ $\left(S^{n-1},\|\cdot\|_{2}\right.$), and establish a bound on $\mathbb{E} \sup _{x \in T} X_{x}$ using Dudley's inequality. First we address whether the increments $\left|X_{x}-X_{y}\right|$ are subgaussian. We rewrite $\|A x\|_{2}^{2}$ as $\|A x\|_{2}^{2}=\sum_{k=1}^{m}\left\langle\bar{x}_{k}, x\right\rangle$, where \bar{x}_{k} denotes the $k^{\text {th }}$ row of A.

$$
\begin{aligned}
\left|X_{x}-X_{y}\right| & \leq\left|\frac{1}{m} \sum_{k=1}^{m}\left\langle\bar{x}_{k}, x\right\rangle^{2}-\left\langle\bar{x}_{k}, y\right\rangle^{2}\right| \\
& =\left|\frac{1}{m} \sum_{k=1}^{m} z_{k}\right|
\end{aligned}
$$

where $z_{k}=\left\langle\bar{x}_{k}, x-y\right\rangle\left\langle\bar{x}_{k}, x+y\right\rangle$. The z_{k} are not subgaussian, yet $\left\langle\bar{x}_{k}, x-y\right\rangle$ and $\left\langle\bar{x}_{k}, x+y\right\rangle$ are individually subgaussian (by a previous lemma). We have two bounds

$$
\begin{aligned}
\mathbb{P}\left(\left|\left\langle\bar{x}_{k}, x-y\right\rangle\right|>\sqrt{u}\|x-y\|_{2}\right) \leq C e^{-c u} \\
\mathbb{P}\left(\left|\left\langle\bar{x}_{k}, x+y\right\rangle\right|>\sqrt{u}\|x+y\|_{2}\right) \leq C e^{-c u},
\end{aligned}
$$

and, therefore, considering the product $\left|z_{k}\right|=\left|\left\langle\bar{x}_{k}, x+y\right\rangle\left\langle\bar{x}_{k}, x-y\right\rangle\right|$, we have

$$
\mathbb{P}\left(\left|z_{k}\right|>\sqrt{u}\|x-y\|_{2}\|x+y\|_{2}\right) \leq 2 C e^{-c u}
$$

Since $\|x+y\| \leq 2$,

$$
\mathbb{P}\left(\left|z_{k}\right|>\sqrt{u}\|x-y\|_{2}\right) \leq 2 C e^{-c^{\prime} u}
$$

that is, z_{k} are subexponential. Recall from lecture 7 the Large Deviation Inequality; it says that the sum of subexponential random variables is a mixture of subexponential and subgaussian. That is, in its most concentrated region, the sum is distributed like a gaussian, yet its tails are subexponential. We will use the following corallary.

Corollary 2 (Bernstein's Inequality for Subexponential Random Variables). If Y_{k} are i.i.d. subexponential random variables, then

$$
\mathbb{P}\left(\left|\frac{1}{m} \sum_{k=1}^{m} Y_{k}\right| \geq u\right) \leq C \exp \left(-C m \cdot \min \left(u, u^{2}\right)\right) .
$$

We apply this corollary to $Y_{k}=\frac{z_{k}}{\|x-y\|_{2}}$ as follows:

$$
\begin{aligned}
Y_{k} & =\frac{z_{k}}{\|x-y\|_{2}} \\
& =\mathbb{P}\left(\left|\frac{1}{m} \sum_{k=1}^{m} z_{k}\right|>u\|x-y\|_{2}\right) \\
& =\mathbb{P}\left(\left|X_{x}-X_{y}\right|>u\|x-y\|_{2}\right) \\
& \leq C \exp \left(-C m \cdot \min \left(u, u^{2}\right)\right)
\end{aligned}
$$

Dudley's Inequality may equivalently be stated for subgaussian/subexpontial tails as

$$
\mathbb{E} \sup _{t \in T} X_{t} \leq C \int_{0}^{\infty}\left(\sqrt{\frac{\log (N(t, \epsilon))}{m}}+\frac{\log (N(T, \epsilon))}{m}\right) d \epsilon .
$$

Exercise 3. Determine the appropriate weights in the proof of Dudley's inequality to adopt the proof to the subgaussian/subexponential case.

In our case, $T=\left(S^{n-1},\|\cdot\|_{2}\right)$. Therefore, $N(T, \epsilon) \leq\left(\frac{3}{\epsilon}\right)^{n}$ (see lecture 6).

$$
\begin{aligned}
\mathbb{E} \sup _{t \in T} X_{t} & \leq C \int_{0}^{\infty}\left(\sqrt{\frac{n}{m} \log (N(T, \epsilon))}+\frac{\log (N(T, \epsilon))}{m}\right) d \epsilon \\
& \leq C \int_{0}^{\infty}\left(\sqrt{\frac{n}{m} \log \left(\frac{3}{\epsilon}\right)}+\frac{\log \left(\frac{3}{\epsilon}\right)}{m}\right) d \epsilon \\
& =C \int_{0}^{1=\operatorname{diam} T}\left(\sqrt{\frac{n}{m} \log \left(\frac{3}{\epsilon}\right)}+\frac{\log (N(T, \epsilon))}{m}\right) d \epsilon \\
& =C\left(\sqrt{\frac{m}{n}}+\frac{n}{m}\right) \\
& =C^{\prime} \sqrt{\frac{m}{n}} .
\end{aligned}
$$

Thus

$$
\begin{align*}
\mathbb{E} X_{x} & =\mathbb{E}\left|\frac{1}{m}\|A x\|_{2}^{2}-1\right| \tag{2}\\
& \leq C^{\prime} \sqrt{\frac{m}{n}} \tag{3}
\end{align*}
$$

Exercise 4. Show that equation (1), and hence Theorem 1., follows from (3).

References

[1] M. Ledoux and M. Talagrand. Probability in Banach spaces, volume 23 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1991.
[2] M. Talagrand. Majorizing measures: the generic chaining. The Annals of Probability, 24(3):1049-1103, 1996.
[3] M. Talagrand. The generic chaining. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2005.

