Non-Asymptotic Theory of Random Matrices

Lecture 9: Applications of Dudley’s Inequality: Sharper bounds
for random matrices
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Recall Dudley’s Inequality from lecture 8: Let (7', d) be a metric space
and (X¢)ter a random process on T' with subgaussian increments, that is

P (X, — Xo| > u-d(t, 5)) < exp(—u?)
for all t,s € T and all © > 0. Then
[e.e]
Esup X; < C’/ V1og N(t,€)de,
teT 0

where N (t, €) is the e-covering number of 7. Brownian motion is an example
of random process, where T is time and X; is a random variable that gives
the position of the particle at time t. See [2, 3, 1].

Theorem 1. Let A be an n X m, m > n, random matriz with i.i.d, mean
zero, variance 1, subgaussian entries. Then, with probability 1—C exp(—m),

Vit — e/t < s1(A) < sn(A) < Vi + eV
Equivalently, for every vector x € R™ with ||z|2 =1,
Vm —Cv/n < ||Az|ls < vVm + CV/n. (1)
This shows that \/—%A is an “almost isometry” if m >> n. Our approach

to prove this theorem is to establish a bound on

1
X, = EHA:EH% -1

for all + € S""!. We work with the random process (X;)zer on T =
(S"71 ||+ |l2), and establish a bound on E sup,cp X, using Dudley’s inequal-
ity. First we address whether the increments | X, — X, | are subgaussian. We
rewrite ||Az||3 as ||Az||3 = Y1, (Tk, z), where Tj, denotes the k' row of A.

1 & _
‘X;B - Xy‘ < | E Z(xkax>2 - <$k>y>2‘
k=1

1 m
= |Ezzk‘a

k=1

1



where 2z = (Tk, 2 —y) (T, z+vy). The z; are not subgaussian, yet (Ty,z —1y)
and (T, z+vy) are individually subgaussian (by a previous lemma). We have
two bounds

P(|(Zg, z — y)| > Vullz —yll2) < Ce™
P(|(@k, z + y)| > Vullz +yll2) < Cem,

and, therefore, considering the product |zx| = [(Tk,z + y) (T, x — y)|, we
have
P(lzk| > Vullz = yllallz + yll2) < 2Ce™ "

Since |z +y|| < 2,
P(|2k| > Vallz - yll2) < 2Ce™;

that is, 2z are subexponential. Recall from lecture 7 the Large Deviation
Inequality; it says that the sum of subexponential random variables is a mix-
ture of subexponential and subgaussian. That is, in its most concentrated
region, the sum is distributed like a gaussian, yet its tails are subexponential.
We will use the following corallary.

Corollary 2 (Bernstein’s Inequality for Subexponential Random Variables).
If Yy are i.i.d. subexponential random variables, then

P 3" il > u) < Cexp(~Crm - min(u, u?)).
m k=1

We apply this corollary to Y, = ”xf—ky”Q as follows:

Y, = — k&
[z —yll2

1 m
= B(= >zl > ule - yl2)
k=1

= P(Xe = Xy| > ullz —yl2)
< Cexp(—Cm - min(u,u?))

Dudley’s Inequality may equivalently be stated for subgaussian/subexpontial
tails as

Esup X; < c/oo ( log(N(t,€)) | log(N(T, e))> e
teT 0 m m



Exercise 3. Determine the appropriate weights in the proof of Dudley’s
inequality to adopt the proof to the subgaussian/suberponential case.

In our case, T = (5", ||-||2). Therefore, N(T,¢) < (2)" (see lecture 6).

N log(N(T, 6))) de

e n
Esup X; < C/ < — log(N(T,¢))
0 m m

teT
C/OOO (\/%log(%)—l—%) de

_ C/ldiamT< Qlog(§)+log(N(T’6))>df
0 m €

IN

m

m n
= CYatw
— o "
S
Thus
EX, = E|—|Az[3 -1 ()
m
< o
< o2 3)

Exercise 4. Show that equation (1), and hence Theorem 1., follows from

(3)-
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