Final Exam (2 pages) Probability Theory (MATH 235A, Fall 2007)

1. (12 pts) One tosses a fair coin (H=Heads, T=Tails) until the first appearance of the pattern HT. How many tosses on average is made?

2. (13 pts) Prove that, for a random variable X with finite variance, one has

$$\operatorname{Var}(X) = \min_{a \in \mathbb{R}} \mathbb{E}(X - a)^2.$$

3. Consider independent random variables X_1, X_2, \ldots uniformly distributed in [0, 1], and let $Z_n = \max_{k \le n} X_k$.

(a) (8 pts) Prove that $Z_n \to 1$ in probability.

(b) (8 pts) Prove that $Z_n \to 1$ almost surely.

4. Consider independent and identically distributed random variables X_1, X_2, \ldots such that $\mathbb{P}(X_k = 0) < 1$.

(a) (11 pts) Assuming that X_k have finite mean, prove that

$$\mathbb{P}\big(\sum_{k} X_k \text{ converges}\big) = 0.$$

(b) (16 pts) Prove the same conclusion *without* the finite mean assumption.

5. (16 pts) A horizontal stick of length 1 is broken at a random point that is uniformly distributed. The right hand part is thrown away, and the left part is broken similarly (at a random point uniformly distributed in this part). Show that after n steps, the remaining part has exponentially small length. More precisely, prove that its length X_n satisfies

 $X_n^{1/n} \to 1/e$ almost surely.

(Hint: represent X_n as a product of some random variables, and take logarithm).

6. We say that random variables X_1, X_2, \ldots with finite means satisfy the Weak Law of Large Numbers if their arithmetic means $S_n = \frac{1}{n} \sum_{k=1}^n X_k$ satisfy

 $S_n \to \mathbb{E}S_n$ in probability.

(a) (16 pts) Consider random variables X_1, X_2, \ldots with uniformly bounded variances: $\operatorname{Var}(X_k) \leq C < \infty$ for all k. Suppose that X_j, X_k are independent if k > j + 1 (in other words, every X_k depends only on X_{k-1}). Prove that these random variables satisfy the Weak Law of Large Numbers.

(b) Bonus Problem, full credit only (15 pts) The *covariance* of random variables X, Y is defined as

$$\operatorname{Cov}(X,Y) = \mathbb{E}(X - \mathbb{E}X)(Y - \mathbb{E}Y).$$

Consider identically distributed random variables X_k with finite variances. Suppose that

$$\operatorname{Cov}(X_j, X_k) \to 0 \quad \text{as } |j-k| \to \infty.$$

Prove these random variables satisfy the Weak Law of Large Numbers.