Final Exam (2 pages)
Probability Theory (MATH 235A, Fall 2007)

1. (12 pts) One tosses a fair coin (H=Heads, $\mathrm{T}=$ Tails) until the first appearance of the pattern HT. How many tosses on average is made?
2. (13 pts) Prove that, for a random variable X with finite variance, one has

$$
\operatorname{Var}(X)=\min _{a \in \mathbb{R}} \mathbb{E}(X-a)^{2}
$$

3. Consider independent random variables X_{1}, X_{2}, \ldots uniformly distributed in $[0,1]$, and let $Z_{n}=\max _{k \leq n} X_{k}$.
(a) (8 pts) Prove that $Z_{n} \rightarrow 1$ in probability.
(b) (8 pts) Prove that $Z_{n} \rightarrow 1$ almost surely.
4. Consider independent and identically distributed random variables X_{1}, X_{2}, \ldots such that $\mathbb{P}\left(X_{k}=0\right)<1$.
(a) (11 pts) Assuming that X_{k} have finite mean, prove that

$$
\mathbb{P}\left(\sum_{k} X_{k} \text { converges }\right)=0 .
$$

(b) (16 pts) Prove the same conclusion without the finite mean assumption.
5. ($\mathbf{1 6} \mathrm{pts}$) A horizontal stick of length 1 is broken at a random point that is uniformly distributed. The right hand part is thrown away, and the left part is broken similarly (at a random point uniformly distributed in this part). Show that after n steps, the remaining part has exponentially small length. More precisely, prove that its length X_{n} satisfies

$$
X_{n}^{1 / n} \rightarrow 1 / e \quad \text { almost surely. }
$$

(Hint: represent X_{n} as a product of some random variables, and take logarithm).
6. We say that random variables X_{1}, X_{2}, \ldots with finite means satisfy the Weak Law of Large Numbers if their arithmetic means $S_{n}=\frac{1}{n} \sum_{k=1}^{n} X_{k}$ satisfy

$$
S_{n} \rightarrow \mathbb{E} S_{n} \quad \text { in probability. }
$$

(a) (16 pts) Consider random variables X_{1}, X_{2}, \ldots with uniformly bounded variances: $\operatorname{Var}\left(X_{k}\right) \leq C<\infty$ for all k. Suppose that X_{j}, X_{k} are independent if $k>j+1$ (in other words, every X_{k} depends only on X_{k-1}). Prove that these random variables satisfy the Weak Law of Large Numbers.
(b) Bonus Problem, full credit only ($\mathbf{1 5} \mathbf{~ p t s}$) The covariance of random variables X, Y is defined as

$$
\operatorname{Cov}(X, Y)=\mathbb{E}(X-\mathbb{E} X)(Y-\mathbb{E} Y)
$$

Consider identically distributed random variables X_{k} with finite variances. Suppose that

$$
\operatorname{Cov}\left(X_{j}, X_{k}\right) \rightarrow 0 \quad \text { as }|j-k| \rightarrow \infty
$$

Prove these random variables satisfy the Weak Law of Large Numbers.

