Homework 4

Probability Theory (MATH 235A, Fall 2007)

1. Generating random variables with given distributions. Consider a funciton $F: \mathbb{R} \rightarrow \mathbb{R}$ that satisfies:
(i) F is nondecreasing and $0 \leq F(x) \leq 1$ for all x;
(ii) $F(x) \rightarrow 0$ as $x \rightarrow-\infty$ and $F(x) \rightarrow 1$ as $x \rightarrow \infty$;
(iii) F is right continuous.

Prove that F is a distrubution function of some random variable X. To do so, consider the probability space $(\Omega, \mathcal{R}, \mathbb{P})$ where $\Omega=[0,1], \mathcal{R}$ is the Borel σ-algebra, and \mathbb{P} is the Lebesgue measure. Define X by the assignment

$$
X(\omega):=\sup \{y: F(y)<\omega\}
$$

and prove that X is a random variable with distribution function F
2. Approximation by simple functions. a) Let f be a bounded measurable function. Prove that there exists a sequence of simple functions f_{n} such that $f_{n} \rightarrow f$ pointwise. (Hint: see the proof of Lemma 2.1.)
b) Refer to Definition 2.5 of Lebesgue integral of simple functions. Prove that for every bounded measurable function f, we have

$$
\sup _{\phi \leq f} \int \phi d \lambda=\inf _{\psi \geq f} \int \psi d \lambda,
$$

where ϕ and ψ are simple functions.
3. Functions of random variables. Let X be a random variable with continuous density f. Let ϕ be a strictly increasing and differentiable function.
a) Compute the density of the random variable $\phi(X)$.
b) What is this density for the linear function $\phi(x)=a x+b$?
c) What is this density for the function $\phi(x)=x^{2}$?
d) Work out the answer when X has a standard normal distribution; X^{2} is called the chi-square distribution.
4. Pairwise independence. Give an example of three events A, B and C such that A is independent of B, B is independent of C and A is independent of C, but $A \cup B$ is not independent of C. Deduce that A, B, C are not independent.
5. Independence needs a big sample space. How many independent events can be defined in the sample space that consists of n elements? Give a bound above for arbitrary probability measure on Ω, and show that this bound is sharp.
6. Exponential distribution. Let X be a non-negative random variable with absolutely continuous distribution. Assume that the conditional probability satisfies

$$
\mathbb{P}(X<y+x \mid X \geq y)=\mathbb{P}(X<x), \quad x \geq 0, y \geq 0
$$

Prove that X has an exponential distribution, i.e. its distribution function has the form

$$
F(x)=1-e^{-\lambda x}, \quad x \geq 0,
$$

for some parameter $\lambda>0$.

