Homework 5 Probability Theory (MATH 235A, Fall 2007)

1. Random series. Let X_1, X_2, \ldots be non-negative random variables. Prove the equality

$$\mathbb{E}\Big(\sum_{n=1}^{\infty} X_n\Big) = \sum_{n=1}^{\infty} \mathbb{E} X_n.$$

Explain in what sense the equality holds.

2. Sharpness of Chebyshev's inequality. For every $t \ge 1$, construct a random variable X with mean μ and variance σ^2 , and such that Chebyshev's inequality becomes an equality:

$$\mathbb{P}(|X - \mu| \ge t\sigma) = \frac{1}{t^2}$$

3. Averaging a density Prove that, for any random variable X and a > 0, one has

$$\int_{\mathbb{R}} \mathbb{P}(x < X < x + a) \, dx = a.$$

4. Uniform distribution Let X and Y be uniformly distributed random variables on [0, 1]. Show that, whatever the dependence between X and Y, one has

$$\mathbb{E}|X - Y| \le \frac{1}{2}.$$

5. Independence Let X_1, \ldots, X_n be random variables such that

$$\mathbb{P}((X_1,\ldots,X_n)\in A) = \int_A f(x) \, dx$$

for every Borel set A in \mathbb{R}^n . Assume that $f : \mathbb{R}^n \to \mathbb{R}$ can be factored as

$$f(x_1,\ldots,x_n) = f_1(x_1)\cdots f_n(x_n)$$

for some non-negative measurable functions f_k ; $\mathbb{R} \to \mathbb{R}$. Prove that X_1, \ldots, X_n are independent. Note that f_k are not assumed to be density functions. (However, if you feel a need of continuity, you may assume that f_k are continuous).