1. **Discrete independent random variables**
 (a) Show that if X and Y are independent, integer valued random variables, then
 \[P(X + Y = n) = \sum_k P(X = k)P(Y = n - k). \]

 (b) Let X and Y be independent Poisson random variables with parameters λ and μ respectively. Prove that $X + Y$ is a Poisson random variable with parameter $\lambda + \mu$.

 (c) Let X and Y be independent Binomial random variables with parameters (n, p) and (m, p) respectively. Prove that $X + Y$ is a Binomial random variable with parameter $(n + m, p)$.

2. **Uncorrelated but not independent random variables**
 Consider the probability space $\Omega = [-1/2, 1/2]$ with the normalized Lebesgue measure on it. Construct two random variables X, Y on Ω that are uncorrelated but not independent. (Hint: consider $X(x) = x, Y(x) = ax^2 + b$).

3. **Product of independent random variables**
 Let $X, Y > 0$ be independent random variables with distribution functions F and G.
 (a) Find the distribution function of XY.
 (b) Compute the distribution function of XY if X and Y are independent random variables uniformly distributed on $[0, 1]$.

4. **Convergence in probability and convergence in L^p**
 We have shown in class that convergence in L^p implies convergence in probability for all $p > 0$. Show that the converse does not hold. (Prove this by example for $p = 1$).

5. **The coupon collector problem**
 (a) How many times does one need to toss a coin (on average) until the first head occurs?
 (b) How many times does one need to roll a dice (on average) until the first “six dots” occurs?
 (c) How many times does one need to roll a dice (on average) until all faces have appeared at least once?
 (d) Each time one buys a bag of cheese doodles there is one bonus coupon inside. There are n different coupons that are equally likely to be inside any bag. Prove that one needs to buy about $Cn \log n$ bags on average in order to have a complete collection of the coupons. (Here C is some constant).