Table

Notation	Set-theoretic interpretation	Interpretation in probability theory
ω	element or point	outcome, sample point, elementary event
Ω	set of points	sample space; certain event
F	σ-algebra of subsets	σ -algebra of events
$A \in \mathscr{F}$	set of points	event (if $\omega \in A$, we say that event A occurs)
$\bar{A} = \Omega \setminus A$	complement of A, i.e. the set of points ω that are not in A	event that A does not occur
$A - B \setminus A$ $A \cup B$	union of A and B, i.e. the set of points ω belonging either to A or to B	event that either A or B occurs
$A \cap B \text{ (or } AB)$	intersection of A and B, i.e. the set of points ω belonging to both A and B	event that both A and B occur
Ø	empty set	impossible event
$A \cap B = \emptyset$	A and B are disjoint	events A and B are mutually exclusive, i.e. cannot occur simultaneously
A + B	sum of sets, i.e. union of disjoint sets	event that one of two mutually exclusive events occurs
$A \setminus B$	difference of A and B , i.e. the set of points that belong to A but not to B	event that A occurs and B does not
$A \triangle B$	symmetric difference of sets, i.e. $(A \setminus B) \cup (B \setminus A)$	event that A or B occurs, but not both
$\bigcup_{n=1}^{\infty} A_n$	union of the sets A_1, A_2, \ldots	event that at least one of A_1, A_2, \ldots occurs

$\sum_{n=1}^{\infty} A_n$	sum, i.e. union of pairwise disjoint sets A_1, A_2, \ldots	event that one of the mutually exclusive events A_1, A_2, \ldots occurs
$\bigcap_{n=1}^{\infty} A_n$	intersection of A_1, A_2, \ldots	event that all the events A_1, A_2, \ldots occur
4 * 4	the increasing sequence of sets A_n converges to A_n , i.e.	the increasing sequence of events converges to event A
$\left(\text{or }A=\lim_{n}\uparrow A_{n}\right)$	$A_1 \subseteq A_2 \subseteq \cdots$ and $A = \bigcup_{n=1}^{\infty} A_n$	
A- A	the decreasing sequence of sets A_n converges to A , i.e.	the decreasing sequence of events converges to event A
$\left(\text{or }A=\lim_{n}\downarrow A_{n}\right)$	$A_1 \supseteq A_2 \supseteq \cdots \text{ and } A = \bigcap_{n=1}^{\infty} A_n$	
$\overline{\lim} A_n$	the set	event that infinitely many of events A_1, A_2, \ldots occur
(or $\limsup A_n$ or* $\{A_n \text{ i.o.}\}$)	$\bigcap_{n=1}^{\infty}\bigcup_{k=n}^{\infty}A_{k}$	
$\lim_{n} A_{n}$	the set	event that all the events A_1, A_2, \ldots occur with the possible exception of a finite number of them
(or $\lim \inf A_n$)	$\widetilde{\bigcup}$ $\widetilde{\cap}$ A_k	

^{*} i.o. = infinitely often.

A.N. Shiryaev, Probability, 2nd Ed. Springer, 1996. (pp. 136-137.)