Homework 1

Probability Theory (MATH 235B, Winter 2008)

1. A fair coin is tossed 14,400 times. What is the probability that a head occurs at most 7,428 times?
You may use a computer software to evaluate the standard probability distributions (like normal, Poisson, etc.), or look up a table of their values.
2. The probability of a boy at birth is approximately 0.512 . Evaluate the probability that among 10,000 newborn babies:
(a) there are at least as many girls as boys;
(b) there are at least 200 more boys than girls?
3. Let $S_{n}=X_{1}+\cdots+X_{n}$ where X_{k} are independent random variables such that

$$
\mathbb{P}\left(X_{k}=1\right)=\mathbb{P}\left(X_{k}=-1\right)=\frac{1}{2}
$$

Prove that the random variable $S_{n}^{\prime}=S_{n} / \sqrt{n}$ obeys the following asymptotics for every $\theta>0$:

$$
\mathbb{P}\left(\left.S_{n}^{\prime}>x+\frac{\theta}{x} \right\rvert\, S_{n}^{\prime}>x\right) \rightarrow e^{-\theta} \quad \text { as } x \rightarrow \infty
$$

(You may use Proposition 6.9 of the course notes.)
4. Let X and X_{1}, X_{2}, \ldots be random variables.
(a) Show by example that the following statement is not true in general:

If $X_{n} \rightarrow X$ in distribution then $\mathbb{P}\left(X_{n} \in A\right) \rightarrow \mathbb{P}(X \in A)$ for every Borel set A.
(Hint: consider the random variable X_{n} uniformly distributed on n values $1 / n, 2 / n, \ldots, n / n$. Identify X.)
(b) Assume that the random variables X_{n} have densities f_{n}, and the random variable X has density f. Show by example that the following statement is not true in general:

$$
\text { If } X_{n} \rightarrow X \text { in distribution then } f_{n}(x) \rightarrow f(x) \text { for every } x \in \mathbb{R} .
$$

(Hint: modify the example in (a) by including small intervals around the values k / n.)
5. Let a be a real number and X_{1}, X_{2}, \ldots be random variables. Prove that $X_{n} \rightarrow a$ in distribution if and only if $X_{n} \rightarrow a$ in probability. Here we regard a as a random variable that takes the value a with probability 1 .

